
Example
A = ∀x∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))
Take the tructure M = (people, {q 7→ ancestor , p 7→ parent}, ∅, ∅) and any
value assignment s:

I vM,s(∀x∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D,

vM,s[x←d ](∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D,

vM,s[x←d ][y←d′](q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y)))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if vM,s[x 7→d ][y 7→d′](q(x , y)) = 1

then vM,s[x 7→d ][y 7→d′](p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

vM,s[x 7→d ][y 7→d′](p(x , y)) or vM,s[x 7→d ][y 7→d′](∃z(p(x , z) ∧ q(z, y))) iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d ][y 7→d′][z 7→d′′](p(x , z) ∧ q(z, y)) = 1 iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d ][y 7→d′][z 7→d′′](p(x , z)) = 1 and vM,s[x 7→d ][y 7→d′][z 7→d′′](q(z, y)) = 1
iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that (d , d ′′) ∈ parent and
(d ′′, d ′) ∈ ancestor iff

I for all people d and d ′, if d is an ancestor of d ′, then either d ′ is a parent
of d , or there exists another person d ′′ such that d ′′ is a parent of d and
d ′′ is an ancestor of d ′.

I which is ‘clearly’ true, since ancestor is the transitive closure of parent .



Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.
I Empty clause, denoted by �: n = 0 (the empty clause is false in

every interpretation).
I Unit clause: n = 1.

When we consider clauses we assume that the order of literals in
them is irrelevant.



Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either >,
or ⊥, or is built from literals using only ∧, ∨, ∀ and ∃.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.
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NNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬(∀x)A ⇒ (∃x)¬A,
¬(∃x)A ⇒ (∀x)¬A,
¬¬A ⇒ A



Rectified formulas

Rectified formula F :
I no variable appears both free and bound in F ;
I for every variable x , the formula F contains at most one

occurrence of quantifiers ∀x or ∃x .
Any formula can be transformed into a rectified formula by renaming
bound variables.



Rectification: Example

p(x)→ ∃x(p(x) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x2(p(x2) ∨ r → ¬p(x2)))



Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

∀x(tree(x)→ ∃y(root(y , x))). (∗)

Then we can introduce a function, say rootof that gives the root of a
tree and write

∀x(tree(x)→ root(rootof(x), x)). (∗∗)

Note that (∗) is a logical consequence of (∗∗).
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Skolemisation

Let A be a closed rectified formula in NNF and (∃x)B be a subformula
of A. Let (∀x1), . . . , (∀xn) be all universal quantifiers such that (∃x)B
is in the scope of these quantifiers. Then:

1. remove (∃x) from A.
2. replace x everywhere in A by f (x1, . . . , xn), where f is a new

function symbol.

Skolemisation does not preserve equivalence but preserves
satisfiability.



CNF Transformation

Take a first-order formula F .
1. transform it into NNF;
2. rectify it;
3. skolemise it;
4. remove all universal quantifiers;
5. transform to CNF the same way as propositional formulas.



CNF Transformation

Universal closure of a formula A is a formula

(∀x1) . . . (∀xn)A,

denoted by ∀A, where x1, . . . , xn are all free variables of A.

CNF transformation transforms a closed formula F into a set of
clauses C1, . . . ,Cn such that F is satisfiable if and only if so is the set
of formulas ∀C1, . . . ,∀Cn.
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Example

Suppose we want to prove (establish validity of)

(∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y).

It is valid if and only if its negation

¬((∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y))

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

p(x ,a)
¬p(b, y).
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Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).
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Ideas

Note that we established unsatisfiability by

I Substituting terms for variables, e.g. b for x in p(x ,a);
I Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?
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Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .
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Exercise

Suppose we have two substitutions

{x1 7→ s1, . . . , xm 7→ sm} and
{y1 7→ t1, . . . , yn 7→ tn}.

How can we write their composition using the same notation?



Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.
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Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.
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Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.



Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.
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Lifting, Idea
The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible? Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).
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What should we lift?

I Selection function σ.
I Calculus BRσ.
I Ordering �, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms.
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Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.
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(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ.
In a similar way can define a most general unifier.
Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.



Unification
Let E be a set of equations. An isolated equation in E is any equation x = t
in it such that x has exactly one occurrence in E .

input: a finite set of equations E
output: a solution to E or failure.
begin

while there exists a non-isolated equation (s = t) ∈ E do
case (s, t) of
(t , t) ⇒ remove this equation from E
(x , t) ⇒ if x occurs in t then halt with failure

else replace x by t in all other equations of E
(t , x) ⇒ replace this equation by x = t

and do the same as in the case (x , t)
(c, d) ⇒ halt with failure
(c, f (t1, . . . , tn)) ⇒ halt with failure
(f (t1, . . . , tn), c) ⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn)) ⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn)) ⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end while
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end



Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}



Occurs check

I The check “x occurs in t” is called an occurs check.
I In Prolog, the predicate = implements unification without occurs

check.
I There is also a predicate (and a command) for unification with

occurs check.



Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.
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Properties

Theorem
Let C be a clause and E a set of equations. Then

{D ∈ C∗ | ∃θ(Cθ = D and θ is a solution to E)} = (Cmgs(E))∗.



Binary Resolution System, Non-Ground Case

Binary resolution is the following inference rule:

A ∨ C ¬B ∨ D
(C ∨ D)mgu(A,B)

(BR),

Factoring is the following inference rule:

A ∨ B ∨ C
(A ∨ C)mgu(A,B)

(Fact),



Soundness and Completeness

BR is sound and complete, that is, if a set of clauses is unsatisfiable,
then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a
logical consequence of its premises.

Completeness can be proved using completeness of propositional
resolution and lifting.
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Ordered resolution?

Binary resolution with arbitrary selection is incomplete.

To define ordered resolution one has to define ordering for
non-ground clauses in a way so that they also work for their ground
instances.
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A problem

Is the following set of clauses unsatisfiable?

p(x ,a)
¬p(b, x)?

Yes, since clauses denote their universal closures:

(∀x)p(x ,a)
(∀x)¬p(b, x).

But no rule of the resolution system is applicable to these clauses.
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Renaming away

The domain of a substitution θ is the set of variables {x | θ(x) 6= x} is
finite.
The range of θ is the set of terms {xθ | xθ 6= x}.

A substitution θ is called renaming if (three equivalent
characterisations)

I the domain of θ coincides with its range.
I θ has an inverse σ (that is, θ ◦ σ = σ ◦ θ = {}).
I there exists an n such that θn = {}.

A variant of a term (atom, literal, clause) t is any term obtained from t
by appying a renaming.
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Hidden rule: renaming away

Renaming E1 away from E2: replace E1 by its variant E ′1 so that E ′1
and E2 have no common variables.

Before applying resolution to two clauses C1 and C2 we should
always rename C1 away from C2.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).
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Example

(1) ¬p(x) ∨ ¬q(y) input
(2) ¬p(x) ∨ q(y) input
(3) p(x) ∨ ¬q(y) input
(4) p(x) ∨ q(y) input
(5) ¬p(x) ∨ ¬p(y) BR (1,2)
(6) ¬p(x) Fact (5)
(7) p(x) ∨ p(y) BR (3,4)
(8) p(x) Fact (7)
(9) � BR (6,8)


