Example

$A=\forall x \forall y(q(x, y) \rightarrow(p(x, y) \vee \exists z(p(x, z) \wedge q(z, y))$
Take the tructure $M=$ (people, $\{q \mapsto$ ancestor, $p \mapsto$ parent $\}, \emptyset, \emptyset)$ and any value assignment s :

- $v_{M, s}(\forall x \forall y(q(x, y) \rightarrow(p(x, y) \vee \exists z(p(x, z) \wedge q(z, y)))))=1$ iff
- for all $d \in D$,
$v_{M, s[x \leftarrow d]}(\forall y(q(x, y) \rightarrow(p(x, y) \vee \exists z(p(x, z) \wedge q(z, y)))))=1$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, $v_{M, s[x \leftarrow d]\left[y \leftarrow d^{\prime}\right]}(q(x, y) \rightarrow(p(x, y) \vee \exists z(p(x, z) \wedge q(z, y))))=1$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, if $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]}(q(x, y))=1$ then $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]}(p(x, y) \vee \exists z(p(x, z) \wedge q(z, y)))=1$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, if $\left(d, d^{\prime}\right) \in$ ancestor then either $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]}(p(x, y))$ or $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]}(\exists z(p(x, z) \wedge q(z, y)))$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, if $\left(d, d^{\prime}\right) \in$ ancestor then either $\left(d, d^{\prime}\right) \in$ parent or there exists a $d^{\prime \prime} \in D$, such that $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]\left[z \mapsto d^{\prime \prime}\right]}(p(x, z) \wedge q(z, y))=1$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, if $\left(d, d^{\prime}\right) \in$ ancestor then either $\left(d, d^{\prime}\right) \in$ parent or there exists a $d^{\prime \prime} \in D$, such that $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]\left[z \mapsto d^{\prime \prime}\right]}(p(x, z))=1$ and $v_{M, s[x \mapsto d]\left[y \mapsto d^{\prime}\right]\left[z \mapsto d^{\prime \prime}\right]}(q(z, y))=1$ iff
- for all $d \in D$, for all $d^{\prime} \in D$, if $\left(d, d^{\prime}\right) \in$ ancestor then either $\left(d, d^{\prime}\right) \in$ parent or there exists a $d^{\prime \prime} \in D$, such that $\left(d, d^{\prime \prime}\right) \in$ parent and

Literal, clause

- Literal: either an atom p (positive literal) or its negation $\neg p$ (negative literal).
- The complementary literal to L :

$$
L \stackrel{\text { def }}{\Leftrightarrow} \begin{cases}\neg L, & \text { if } L \text { is positive; } \\ p, & \text { if } L \text { has the form } \neg p .\end{cases}
$$

In other words, p and $\neg p$ are complementary.

- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}, n \geq 0$ of literals.
- Empty clause, denoted by $\square: n=0$ (the empty clause is false in every interpretation).
- Unit clause: $n=1$.

When we consider clauses we assume that the order of literals in them is irrelevant.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either T, or \perp, or is built from literals using only \wedge, \vee, \forall and \exists.

A formula B is called a negation normal form of a formula A if B is equivalent to A and B is in negation normal form.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either T, or \perp, or is built from literals using only \wedge, \vee, \forall and \exists.

A formula B is called a negation normal form of a formula A if B is equivalent to A and B is in negation normal form.

NNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg(\forall x) A & \Rightarrow(\exists x) \neg A, \\
\neg(\exists x) A & \Rightarrow(\forall x) \neg A, \\
\neg \neg A & \Rightarrow A
\end{aligned}
$$

Rectified formulas

Rectified formula F:

- no variable appears both free and bound in F;
- for every variable x, the formula F contains at most one occurrence of quantifiers $\forall x$ or $\exists x$.
Any formula can be transformed into a rectified formula by renaming bound variables.

Rectification: Example

$$
\begin{aligned}
& p(x) \rightarrow \exists x(p(x) \wedge \forall x(p(x) \vee r \rightarrow \neg p(x))) \Rightarrow \\
& p(x) \rightarrow \exists x_{1}\left(p\left(x_{1}\right) \wedge \forall x(p(x) \vee r \rightarrow \neg p(x))\right) \Rightarrow \\
& p(x) \rightarrow \exists x_{1}\left(p\left(x_{1}\right) \wedge \forall x_{2}\left(p\left(x_{2}\right) \vee r \rightarrow \neg p\left(x_{2}\right)\right)\right)
\end{aligned}
$$

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice functions, or witness functions.
Consider an example. We know that every tree has a root:

$$
\begin{equation*}
\forall x(\operatorname{tree}(x) \rightarrow \exists y(\operatorname{root}(y, x))) . \tag{*}
\end{equation*}
$$

Then we can introduce a function, say rootof that gives the root of a tree and write

Note that $(*)$ is a logical consequence of

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice functions, or witness functions.
Consider an example. We know that every tree has a root:

$$
\begin{equation*}
\forall x(\operatorname{tree}(x) \rightarrow \exists y(\operatorname{root}(y, x))) . \tag{*}
\end{equation*}
$$

Then we can introduce a function, say rootof that gives the root of a tree and write

$$
\begin{equation*}
\forall x(\operatorname{tree}(x) \rightarrow \operatorname{root}(\operatorname{rootof}(x), x)) \tag{**}
\end{equation*}
$$

Note that $(*)$ is a logical consequence of $(* *)$.

Skolemisation

Let A be a closed rectified formula in NNF and $(\exists x) B$ be a subformula of A. Let $\left(\forall x_{1}\right), \ldots,\left(\forall x_{n}\right)$ be all universal quantifiers such that $(\exists x) B$ is in the scope of these quantifiers. Then:

1. remove $(\exists x)$ from A.
2. replace x everywhere in A by $f\left(x_{1}, \ldots, x_{n}\right)$, where f is a new function symbol.
Skolemisation does not preserve equivalence but preserves satisfiability.

CNF Transformation

Take a first-order formula F.

1. transform it into NNF;
2. rectify it;
3. skolemise it;
4. remove all universal quantifiers;
5. transform to CNF the same way as propositional formulas.

CNF Transformation

Universal closure of a formula A is a formula

$$
\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right) A,
$$

denoted by $\forall A$, where x_{1}, \ldots, x_{n} are all free variables of A.
CNF transformation transforms a closed formula F into a set of clauses C_{1}, \ldots, C_{n} such that F is satisfiable if and only if so is the set of formulas $\forall C_{1}$.

CNF Transformation

Universal closure of a formula A is a formula

$$
\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right) A,
$$

denoted by $\forall A$, where x_{1}, \ldots, x_{n} are all free variables of A.
CNF transformation transforms a closed formula F into a set of clauses C_{1}, \ldots, C_{n} such that F is satisfiable if and only if so is the set of formulas $\forall C_{1}, \ldots, \forall C_{n}$.

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y)
$$

is unsatisfiable.

The transformation of this formula to CNF gives us two clauses:

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y)
$$

It is valid if and only if its negation

$$
\neg((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))
$$

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y) .
$$

It is valid if and only if its negation

$$
\neg((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))
$$

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

$$
\begin{aligned}
& p(x, a) \\
& \neg p(b, y) .
\end{aligned}
$$

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$; - Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$; - $p(b, a)$ and $p(b, a)$ are unsatisfiable (e.g., by resolution).

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;
- $p(b, a)$ and $p(b, a)$ are unsatisfiable (e.g., by resolution).

Ideas

Note that we established unsatisfiability by

- Substituting terms for variables, e.g. b for x in $p(x, a)$;
- Using propositional resolution.

Ideas

Note that we established unsatisfiability by

- Substituting terms for variables, e.g. b for x in $p(x, a)$;
- Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
different variables, denotes the substitution θ such that
- Application of this substitution to an expression E : simultaneous
replacement of x_{i} by t_{i}.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

- Application of this substitution to an expression E: simultaneous replacement of x_{i} by t_{i}.
- The result of the application of a substitution θ to E is denoted by E θ.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

- Application of this substitution to an expression E : simultaneous replacement of x_{i} by t_{i}.
- The result of the application of a substitution θ to E is denoted by E θ.
- Since substitutions are functions, we can define their composition (writen $\sigma \tau$ instead of $\tau \circ \sigma$). Note that we have $E(\sigma \tau)=(E \sigma) \tau$.

Exercise

Suppose we have two substitutions

$$
\begin{aligned}
& \left\{x_{1} \mapsto s_{1}, \ldots, x_{m} \mapsto s_{m}\right\} \text { and } \\
& \left\{y_{1} \mapsto t_{1}, \ldots, y_{n} \mapsto t_{n}\right\} .
\end{aligned}
$$

How can we write their composition using the same notation?

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E.
> some instances of the term $f(x, a, g(x))$ are:

- but the term $f(b, a, g(c))$ is not an instance of this term.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)), \\
& f(g(b), a, g(g(b))) ;
\end{aligned}
$$

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)) \\
& f(g(b), a, g(g(b)))
\end{aligned}
$$

- but the term $f(b, a, g(c))$ is not an instance of this term.

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)) \\
& f(g(b), a, g(g(b)))
\end{aligned}
$$

- but the term $f(b, a, g(c))$ is not an instance of this term.

Ground instance: instance with no variables.

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent S is unsatisfiable; 2. S^{*} is unsatisfiable; Note that hy comnactness the last condition is equivalent to there exists a finite unsatisfiable set of ground instances of clauses in S

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of se
of arbitrary clauses to checking inconsistency of sets of ground
clauses \ldots the only problem is that S^{*} can be infinite even if S is finite.

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of sets of arbitrary clauses to checking inconsistency of sets of ground clauses...

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of sets of arbitrary clauses to checking inconsistency of sets of ground clauses ... the only problem is that S^{*} can be infinite even if S is finite.

Lifting

Lifting is a technique for proving completeness theorems in the following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

But there is an infinite number of such inferences.

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Is this always possible?

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Is this always possible? Yes!

$$
\begin{equation*}
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)} \tag{BR}
\end{equation*}
$$

Note that the substitution $\{x \mapsto y, z \mapsto a\}$ is a solution of the "equation" $p(x, a)=p(y, z)$.

What should we lift?

- Selection function σ.
- Calculus $\mathbb{B}_{\mathbb{R}_{\sigma}}$.
- Ordering \succ, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve equations $s=t$ between terms and between atoms.

What should we lift?

- Selection function σ.
- Calculus $\mathbb{B}_{\mathbb{R}}$.
- Ordering \succ, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve equations $s=t$ between terms and between atoms.

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$. In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$. In a similar way we can define solutions to systems of equations $s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$. We call such solutions simultaneous unifiers of s_{1}, \ldots, s_{n} and

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$.
In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$.
In a similar way we can define solutions to systems of equations
$s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$.
We call such solutions s imultaneous unifiers of $s_{1} \ldots \ldots s_{n}$ and

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$.
In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$.
In a similar way we can define solutions to systems of equations $s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$.
We call such solutions simultaneous unifiers of s_{1}, \ldots, s_{n} and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general solution if for every other solution σ there exists a substitution τ such that $\theta \tau=\sigma$.
In a similar way can define a most general unifier.
Consider terms $f\left(x_{1}, g\left(x_{1}\right), x_{2}\right)$ and $f\left(y_{1}, y_{2}, y_{2}\right)$.
(Some of) their unifiers are
$\theta_{1}=\left\{y_{1} \mapsto x_{1}, y_{2} \mapsto g\left(x_{1}\right), x_{2} \mapsto g\left(x_{1}\right)\right\}$ and
$\theta_{2}=\left\{y_{1} \mapsto a, y_{2} \mapsto g(a), x_{2} \mapsto g(a), x_{1} \mapsto a\right\}:$
$f\left(x_{1}, g\left(x_{1}\right), x_{2}\right) \theta_{1}=f\left(x_{1}, g\left(x_{1}\right), g\left(x_{1}\right)\right)$;
$f\left(y_{1}, y_{2}, y_{2}\right) \theta_{1}=f\left(x_{1}, g\left(x_{1}\right), g\left(x_{1}\right)\right)$;
$f\left(x_{1}, g\left(x_{1}\right), x_{2}\right) \theta_{2}=f(a, g(a), g(a)) ;$
$f\left(y_{1}, y_{2}, y_{2}\right) \theta_{2}=f(a, g(a), g(a))$.
But only θ_{1} is most general.

Unification

Let E be a set of equations. An isolated equation in E is any equation $x=t$ in it such that x has exactly one occurrence in E.
input: a finite set of equations E
output: a solution to E or failure.

begin

while there exists a non-isolated equation $(s=t) \in E \underline{\text { do }}$

case (s, t) of

$(t, t) \Rightarrow$ remove this equation from E
$(x, t) \Rightarrow$ if x occurs in t then halt with failure
else replace x by t in all other equations of E
$(t, x) \Rightarrow$ replace this equation by $x=t$
and do the same as in the case (x, t)
$(c, d) \Rightarrow$ halt with failure
$\left(c, f\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ halt with failure
$\left(f\left(t_{1}, \ldots, t_{n}\right), c\right) \Rightarrow$ halt with failure
$\left(f\left(s_{1}, \ldots, s_{m}\right), g\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ halt with failure
$\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ replace this equation by the set

$$
s_{1}=t_{1}, \ldots, s_{n}=t_{n}
$$

end while
Now E has the form $\left\{x_{1}=r_{1}, \ldots, x_{l}=r_{l}\right\}$ and every equation in it is isolated return the substitution $\left\{x_{1} \mapsto r_{1}, \ldots, x_{l} \mapsto r_{1}\right\}$
end

Examples

$$
\begin{aligned}
& \{h(g(f(x), a))=h(g(y, y))\} \\
& \{h(f(y), y, f(z))=h(z, f(x), x)\} \\
& \{h(g(f(x), z))=h(g(y, y))\}
\end{aligned}
$$

Occurs check

- The check " x occurs in t " is called an occurs check.
- In Prolog, the predicate = implements unification without occurs check.
- There is also a predicate (and a command) for unification with occurs check.

Properties

Theorem Suppose we run the unification algorithm on $s=t$. Then

- If s and t are unifiable, then the algorithms terminates and outputs a most general unifier of s and t.
- If s and t are not unifiable, then the algorithms terminates with failure.
Notation (slightly ambiguous):
- mgu(s, t) for a most general unifier;
- $\operatorname{mas}(E)$ for a most qeneral solution.

Properties

Theorem Suppose we run the unification algorithm on $s=t$. Then

- If s and t are unifiable, then the algorithms terminates and outputs a most general unifier of s and t.
- If s and t are not unifiable, then the algorithms terminates with failure.
Notation (slightly ambiguous):
- $m g u(s, t)$ for a most general unifier;
- $m g s(E)$ for a most general solution.

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Properties

Theorem
Let C be a clause and E a set of equations. Then
$\left\{D \in C^{*} \mid \exists \theta(C \theta=D\right.$ and θ is a solution to $\left.E)\right\}=(\operatorname{Cmgs}(E))^{*}$.

Binary Resolution System, Non-Ground Case

Binary resolution is the following inference rule:

$$
\frac{\underline{A} \vee C \underset{(C \vee D) m g u(A, B)}{(\mathrm{BR})}, \text {, }, \text {, }}{\underline{B} \vee D}
$$

Factoring is the following inference rule:

$$
\frac{\underline{A} \vee \underline{B} \vee C}{(A \vee C) m g u(A, B)}(\text { Fact })
$$

Soundness and Completeness

$\mathbb{B} \mathbb{R}$ is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Soundness and Completeness

$\mathbb{B} \mathbb{R}$ is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Completeness can be proved using completeness of propositional
resolution and lifting

Soundness and Completeness

$\mathbb{B} \mathbb{R}$ is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Completeness can be proved using completeness of propositional resolution and lifting.

Ordered resolution?

Binary resolution with arbitrary selection is incomplete.
To define ordered resolution one has to define ordering for non-ground clauses in a way so that they also work for their ground instances.

Ordered resolution?

Binary resolution with arbitrary selection is incomplete.
To define ordered resolution one has to define ordering for non-ground clauses in a way so that they also work for their ground instances.

A problem

Is the following set of clauses unsatisfiable?

$$
\begin{aligned}
& p(x, a) \\
& \neg p(b, x) ?
\end{aligned}
$$

Yes, since clauses denote their universal closures:

But no rule of the resolution system is applicable to these clauses.

A problem

Is the following set of clauses unsatisfiable?

$$
\begin{aligned}
& p(x, a) \\
& \neg p(b, x) ?
\end{aligned}
$$

Yes, since clauses denote their universal closures:

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall x) \neg p(b, x) .
\end{aligned}
$$

A problem

Is the following set of clauses unsatisfiable?

$$
\begin{aligned}
& p(x, a) \\
& \neg p(b, x) ?
\end{aligned}
$$

Yes, since clauses denote their universal closures:

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall x) \neg p(b, x) .
\end{aligned}
$$

But no rule of the resolution system is applicable to these clauses.

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite.
The range of θ is the set of terms $\{x \theta \mid x \theta \neq x\}$.

A substitution θ is called renaming if (three equivalent characterisations)
\rightarrow the domain of θ coincides with its range.

- θ has an inverse σ (that is, $\theta \circ \sigma=\sigma \circ \theta=\{ \}$). - there exists an n sich that $A^{n}=\{ \}$

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite.
The range of θ is the set of terms $\{x \theta \mid x \theta \neq x\}$.
A substitution θ is called renaming if (three equivalent characterisations)

- the domain of θ coincides with its range.
- θ has an inverse σ (that is, $\theta \circ \sigma=\sigma \circ \theta=\{ \}$).
- there exists an n such that $\theta^{n}=\{ \}$. by appying a renaming.

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite.
The range of θ is the set of terms $\{x \theta \mid x \theta \neq x\}$.
A substitution θ is called renaming if (three equivalent characterisations)

- the domain of θ coincides with its range.
- θ has an inverse σ (that is, $\theta \circ \sigma=\sigma \circ \theta=\{ \}$).
- there exists an n such that $\theta^{n}=\{ \}$.

A variant of a term (atom, literal, clause) t is any term obtained from t by appying a renaming.

Hidden rule: renaming away

Renaming E_{1} away from E_{2} : replace E_{1} by its variant E_{1}^{\prime} so that E_{1}^{\prime} and E_{2} have no common variables.

Before applying resolution to two clauses C_{1} and C_{2} we should always rename C_{1} away from C_{2}.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).

Hidden rule: renaming away

Renaming E_{1} away from E_{2} : replace E_{1} by its variant E_{1}^{\prime} so that E_{1}^{\prime} and E_{2} have no common variables.

Before applying resolution to two clauses C_{1} and C_{2} we should always rename C_{1} away from C_{2}.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).

Hidden rule: renaming away

Renaming E_{1} away from E_{2} : replace E_{1} by its variant E_{1}^{\prime} so that E_{1}^{\prime} and E_{2} have no common variables.

Before applying resolution to two clauses C_{1} and C_{2} we should always rename C_{1} away from C_{2}.

Renaming is sometimes called standardising apart (especially in the logic programming literature).

Example

(1) $\neg p(x) \vee \neg q(y) \quad$ input
(2) $\neg p(x) \vee q(y)$ input
(3) $p(x) \vee \neg q(y) \quad$ input
(4) $p(x) \vee q(y) \quad$ input
(5) $\neg p(x) \vee \neg p(y) \quad \mathrm{BR} \quad(1,2)$
(6) $\neg p(x)$

Fact
(5)
(7) $p(x) \vee p(y) \quad \mathrm{BR}$
$(3,4)$
(8) $p(x)$

Fact
(7)
(9) \square

BR
$(6,8)$

