
Logic and Automated Reasoning

Andrei Voronkov
(University of Manchester)

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Computer Systems and Correctness

Suppose we design a (complex) computer system, which may
contain various components, for example, hardware, software etc.
We have high requirements to the correctness of the system (safety,
reliability, security, consistent state, no deadlocks etc.)
How can one achive a 100% safety?
Computer systems are becoming increasingly unreliable.

Small Example: Software

Consider the following fragment of a C++ program:

int sumOfFirstNIntegers(int n)
requires n >= 0
ensures result = n * (n+1) / 2

{
int sum = 0;
for (i = n;i != 0;i = i-1) { sum = sum+i; }
return sum;

}

We know that
1 + . . .+ n =

n · (n + 1)

2

Is it true that for all integer n the program returns n·(n+1)
2 ?

We can write a Spec#-specification.
How can we prove automatically that the program is correct w.r.t. this
specification?

Small Example: Software

Consider the following fragment of a C++ program:

int sumOfFirstNIntegers(int n)
requires n >= 0
ensures result = n * (n+1) / 2

{
int sum = 0;
for (i = n;i != 0;i = i-1) { sum = sum+i; }
return sum;

}

We know that
1 + . . .+ n =

n · (n + 1)

2

Is it true that for all integer n the program returns n·(n+1)
2 ?

We can write a Spec#-specification.
How can we prove automatically that the program is correct w.r.t. this
specification?

Small Example: Software

Consider the following fragment of a C++ program:

int sumOfFirstNIntegers(int n)
requires n >= 0
ensures result = n * (n+1) / 2

{
int sum = 0;
for (i = n;i != 0;i = i-1) { sum = sum+i; }
return sum;

}

We know that
1 + . . .+ n =

n · (n + 1)

2

Is it true that for all integer n the program returns n·(n+1)
2 ?

We can write a Spec#-specification.
How can we prove automatically that the program is correct w.r.t. this
specification?

Small Example: Software

Consider the following fragment of a C++ program:

int sumOfFirstNIntegers(int n)
requires n >= 0
ensures result = n * (n+1) / 2

{
int sum = 0;
for (i = n;i != 0;i = i-1) { sum = sum+i; }
return sum;

}

We know that
1 + . . .+ n =

n · (n + 1)

2

Is it true that for all integer n the program returns n·(n+1)
2 ?

We can write a Spec#-specification.
How can we prove automatically that the program is correct w.r.t. this
specification?

Another example: circuit design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.
We want to be sure that C2 is correct, that is, it will behave according
to some specification.
If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.

Another example: circuit design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.
We want to be sure that C2 is correct, that is, it will behave according
to some specification.
If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.

Another example: circuit design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.
We want to be sure that C2 is correct, that is, it will behave according
to some specification.
If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.

Automated Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Automated Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Automated Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)

In the TPTP Syntax
TPTP library (Thousands of Problems for Theorem Provers),
www.tptp.org.

%---- 1 * x = 1
fof(left identity,axiom,

mult(e,X) = X.
%---- i(x) * x = 1
fof(left inverse,axiom,

mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

mult(X,Y) = mult(Y,X)).

Example: Proof by Vampire

.....

Theorem Provers

Theorem Prover: a system that can prove theorems automatically.
Two kinds of provers:

I automatic provers;
I interactive provers, or proof assistants.

Logics:

I in automatic provers mainly first-order logic (with built-in
equality);

I in interactive provers higher-order logics or type theories.

This course will be mainly about fully automatic theorem provers for
first-order logic.

Theorem Provers

Theorem Prover: a system that can prove theorems automatically.
Two kinds of provers:

I automatic provers;
I interactive provers, or proof assistants.

Logics:

I in automatic provers mainly first-order logic (with built-in
equality);

I in interactive provers higher-order logics or type theories.

This course will be mainly about fully automatic theorem provers for
first-order logic.

Theorem Provers

Theorem Prover: a system that can prove theorems automatically.
Two kinds of provers:

I automatic provers;
I interactive provers, or proof assistants.

Logics:

I in automatic provers mainly first-order logic (with built-in
equality);

I in interactive provers higher-order logics or type theories.

This course will be mainly about fully automatic theorem provers for
first-order logic.

Theorem Provers

Theorem Prover: a system that can prove theorems automatically.
Two kinds of provers:

I automatic provers;
I interactive provers, or proof assistants.

Logics:

I in automatic provers mainly first-order logic (with built-in
equality);

I in interactive provers higher-order logics or type theories.

This course will be mainly about fully automatic theorem provers for
first-order logic.

Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies),

Semantic Web;
I Theorem proving in mathematics, especially in algebra;
I Verification of cryptographic protocols;
I Circuit design;
I Constraint satisfaction;
I Planning;
I Databases (semantics and query optimisation);
I Solving exercises for this course ..

^

What We Expect of an Automatic Theorem Prover

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).

What We Expect of an Automatic Theorem Prover

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Connectives

Connective Name Priority
> verum
⊥ falsum
¬ negation 4
∧ conjunction 3
∨ disjunction 3
→ implication 2
↔ equivalence 1

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.

Interpreting formulas

Extend I to all formulas:

1. I(>) = 1 and I(⊥) = 0.
2. I(A1 ∧ . . . ∧ An) = 1 if and only if I(Ai) = 1 for all i .
3. I(A1 ∨ . . . ∨ An) = 1 if and only if I(Ai) = 1 for some i .
4. I(¬A) = 1 if and only if I(A) = 0.
5. I(A1 → A2) = 1 if and only if I(A1) = 0 or I(A2) = 1.
6. I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples: equivalences

For all formulas A and B, the following equivalences hold.

A→ ⊥ ≡ ¬A; (1)
> → A ≡ A; (2)
A→ B ≡ ¬(A ∧ ¬B); (3)
A ∧ B ≡ ¬(¬A ∨ ¬B); (4)
A ∨ B ≡ ¬A→ B. (5)

Connections between these notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.
3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

Connections between these notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.
3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.

Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.

Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Formalisation in propositional logic

Introduce propositional variables XY with the following meaning in
mind:

X ∈ {R,G,S} (denoting Russian, German, Spy)
Y ∈ {S,M,E} (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian

Formalisation in propositional logic

Introduce propositional variables XY with the following meaning in
mind:

X ∈ {R,G,S} (denoting Russian, German, Spy)
Y ∈ {S,M,E} (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . ,An, or
follows from A1, . . . ,An, if every model of A1, . . . ,An is also a model of
A.
Note that A is not a logical consequence of A1, . . . ,An if and only if
the set of formulas A1, . . . ,An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . ,An, or
follows from A1, . . . ,An, if every model of A1, . . . ,An is also a model of
A.
Note that A is not a logical consequence of A1, . . . ,An if and only if
the set of formulas A1, . . . ,An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . ,An, or
follows from A1, . . . ,An, if every model of A1, . . . ,An is also a model of
A.
Note that A is not a logical consequence of A1, . . . ,An if and only if
the set of formulas A1, . . . ,An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . ,An, or
follows from A1, . . . ,An, if every model of A1, . . . ,An is also a model of
A.
Note that A is not a logical consequence of A1, . . . ,An if and only if
the set of formulas A1, . . . ,An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Satisfiability?

Satisfiability checking is a combinatorial problem that is

I easy to formulate;
I hard to solve;
I NP-complete;
I has many algorithms (but only one is commonly used).

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

CNF

I A formula A is in conjunctive normal form, or simply CNF, if it is
either >, or ⊥, or a conjunction of disjunctions of literals:

A =
∧

i

∨
j

Li,j .

(That is, a conjunction of clauses.)
I A formula B is called a conjunctive normal form of a formula A if

B is equivalent to A and B is in conjunctive normal form.

Satisfiability on CNF

I An interpretation I satisfies a formula in CNF

A =
∧

i

∨
j

Li,j .

if and only if it satisfies every clause∨
j

Li,j .

in it.
I An interpretation I satisfies a clause

L1 ∨ . . . ∨ Lk

if and only if it satisfies at least one literal Lm in this clause.

Satisfiability on CNF

I An interpretation I satisfies a formula in CNF

A =
∧

i

∨
j

Li,j .

if and only if it satisfies every clause∨
j

Li,j .

in it.
I An interpretation I satisfies a clause

L1 ∨ . . . ∨ Lk

if and only if it satisfies at least one literal Lm in this clause.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

CNF is exponential

There are formulas for which the shortest CNF has exponential size.

Is there any way to avoid exponential blowup?

CNF is exponential

There are formulas for which the shortest CNF has exponential size.

Is there any way to avoid exponential blowup?

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . ,p6}.
But this set is not equivalent to the original formula.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Definitional Clause Form Transformation

This algorithm converts a formula A into a set of clauses S such that
S is a clausal normal form of A.
If A has the form C1 ∧ . . . ∧ Cn, where n ≥ 1 and each Ci is a clause,
then S def⇔ {C1, . . . ,Cn}.
Otherwise, introduce a name for each subformula B of A such that B
is not a literal and use this name instead of the formula.

Example
subformula definition clauses

n1

n1 ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) n1 ↔ ¬n2 ¬n1 ∨ ¬n2

n1 ∨ n2

n2 (p → q) ∧ (p ∧ q → r)→ (p → r) n2 ↔ (n3 → n7) ¬n2 ∨ ¬n3 ∨ n7

n3 ∨ n2

¬n7 ∨ n2

n3 (p → q) ∧ (p ∧ q → r) n3 ↔ (n4 ∧ n5) ¬n3 ∨ n4

¬n3 ∨ n5

¬n4 ∨ ¬n5 ∨ n3

n4 p → q n4 ↔ (p → q) ¬n4 ∨ ¬p ∨ q
p ∨ n4

¬q ∨ n4

n5 p ∧ q → r n5 ↔ (n6 → r) ¬n5 ∨ ¬n6 ∨ r
n6 ∨ n5

¬r ∨ n5

n6 p ∧ q n6 ↔ (p ∧ q) ¬n6 ∨ p
¬n6 ∨ q
¬p ∨ ¬q ∨ n6

n7 p → r n7 ↔ (p → r) ¬n7 ∨ ¬p ∨ r
p ∨ n7

¬r ∨ n7

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Binary Resolution Inference System

The binary resolution inference system, denoted by BR, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary Resolution Inference System

The binary resolution inference system, denoted by BR, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary Resolution Inference System

The binary resolution inference system, denoted by BR, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference rule is sound if every inference of this rule is sound.
I An inference system is sound if every inference rule in this

system is sound.

Theorem
BR is sound.

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference rule is sound if every inference of this rule is sound.
I An inference system is sound if every inference rule in this

system is sound.

Theorem
BR is sound.

Consequence of Soundness

Theorem
Let S be a set of clauses. If � can be derived from S in BR, then S is
unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Writing derivations in the linear form

(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) ¬p Fact (5)
(7) p ∨ p BR (3,4)
(8) p Fact (7)
(9) � BR (6,8)

Completeness

BR is complete, that is, if a set of clauses is unsatisfiable, then one
can derive an empty clause from this set.

Selection Function

The binary resolution inference system has too many inferences.
There are restrictions on resolution that allow for fewer inferences but
preserve completeness.

To define these systems we need a new notion.

A literal selection function selects one or more literals in every
non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

p ∨ ¬q

Selection Function

The binary resolution inference system has too many inferences.
There are restrictions on resolution that allow for fewer inferences but
preserve completeness.

To define these systems we need a new notion.

A literal selection function selects one or more literals in every
non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

p ∨ ¬q

Selection Function

The binary resolution inference system has too many inferences.
There are restrictions on resolution that allow for fewer inferences but
preserve completeness.

To define these systems we need a new notion.

A literal selection function selects one or more literals in every
non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

p ∨ ¬q

Selection Function

The binary resolution inference system has too many inferences.
There are restrictions on resolution that allow for fewer inferences but
preserve completeness.

To define these systems we need a new notion.

A literal selection function selects one or more literals in every
non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

p ∨ ¬q

Binary Resolution with Selection

The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary resolution with selection is incomplete.

However, it is complete for some well-behaved selection functions.

Binary Resolution with Selection

The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary resolution with selection is incomplete.

However, it is complete for some well-behaved selection functions.

Binary Resolution with Selection

The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary resolution with selection is incomplete.

However, it is complete for some well-behaved selection functions.

Unrestricted binary resolution and binary resolution
with selection

Consider the selection function that selects all literals in a clause.
Then the binary resolution rule:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

becomes a special case of binary resolution with selection.

Literal Orderings

Consider any total ordering � on propositional variables. We want to
extend it to literals.

Let L1 = (¬)A1 and L2 = (¬)A2 be literals. We let L1 �lit L2 if and only
if one of the following conditions holds:

1. A1 � A2; or
2. A1 = A2, L1 is negative and L2 is positive.

In other words, we compare literals by first comparing the atoms of
these literals and if the atoms are equal define the negative literal to
be greater.

Literal Orderings

Consider any total ordering � on propositional variables. We want to
extend it to literals.

Let L1 = (¬)A1 and L2 = (¬)A2 be literals. We let L1 �lit L2 if and only
if one of the following conditions holds:

1. A1 � A2; or
2. A1 = A2, L1 is negative and L2 is positive.

In other words, we compare literals by first comparing the atoms of
these literals and if the atoms are equal define the negative literal to
be greater.

Literal Orderings

Consider any total ordering � on propositional variables. We want to
extend it to literals.

Let L1 = (¬)A1 and L2 = (¬)A2 be literals. We let L1 �lit L2 if and only
if one of the following conditions holds:

1. A1 � A2; or
2. A1 = A2, L1 is negative and L2 is positive.

In other words, we compare literals by first comparing the atoms of
these literals and if the atoms are equal define the negative literal to
be greater.

Ordered resolution

Fix an ordering � on the set of propositional variables and let �lit be
corresponding literal ordering. Consider the selection function σ that
selects all maximal w.r.t. �lit literals.

Theorem
BRσ is complete, that is, for every unsatisfiable set of clauses S one
can derive the empty clause from clauses in S using inferences in
BRσ.

Ordered resolution

Fix an ordering � on the set of propositional variables and let �lit be
corresponding literal ordering. Consider the selection function σ that
selects all maximal w.r.t. �lit literals.

Theorem
BRσ is complete, that is, for every unsatisfiable set of clauses S one
can derive the empty clause from clauses in S using inferences in
BRσ.

Ordered resolution: example

Assume q � p.
(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) p ∨ p BR (3,4)
(7) p Fact (6)
(8) ¬p BR (6,7)
(9) � BR (6,8)

Note: fewer inferences are enabled compared to unrestricted binary
resolution.

Ordered resolution: example

Assume q � p.
(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) p ∨ p BR (3,4)
(7) p Fact (6)
(8) ¬p BR (6,7)
(9) � BR (6,8)

Note: fewer inferences are enabled compared to unrestricted binary
resolution.

End of Lecture 1

Slides for lecture 1 ended here . . .

Inference Process

Inference process: sequence of sets of clauses S0,S1, . . ., denoted by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

C1 . . . Cn

C

in I such that {C1, . . . ,Cn} ⊆ Si ;
2. Si+1 = Si ∪ {C}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of clauses S0,S1, . . ., denoted by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

C1 . . . Cn

C

in I such that {C1, . . . ,Cn} ⊆ Si ;
2. Si+1 = Si ∪ {C}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of clauses S0,S1, . . ., denoted by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

C1 . . . Cn

C

in I such that {C1, . . . ,Cn} ⊆ Si ;
2. Si+1 = Si ∪ {C}.

An I-inference process is an inference process whose every step is
an I-step.

Property

Lemma
Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a clause C
belongs to some Si . Then Si is derivable in I from S0.

Can we prove the inverse?

Property

Lemma
Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a clause C
belongs to some Si . Then Si is derivable in I from S0.

Can we prove the inverse?

Limit and Fairness

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
clauses

⋃
i Si .

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit S∞.
The process is called fair if for every I-inference

C1 . . . Cn

C
,

if {C1, . . . ,Cn} ⊆ S∞, then there exists i such that C ∈ Si .

Limit and Fairness

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
clauses

⋃
i Si .

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit S∞.
The process is called fair if for every I-inference

C1 . . . Cn

C
,

if {C1, . . . ,Cn} ⊆ S∞, then there exists i such that C ∈ Si .

Completeness, reformulated

Theorem Let I be an inference system. The following conditions are
equivalent.

1. I is complete.
2. For every unsatisfiable set of clauses S0 and any fair I-inference

process with the initial set S0, the limit of this inference process
contains �.

Saturated Set of Clauses

Let I be an inference system and S be a set of clauses. S is called
saturated with respect to I, or simply I-saturated, if for every inference
of I with premises in S, the conclusion of this inference also belongs
to S.

The closure of S with respect to I, or simply I-closure, is the smallest
set S′ containing S and saturated with respect to I.

Completeness of Ordered Resolution

Theorem (Completeness)
Take any well-founded ordering � and consider the selection function
σ that selects all maximal w.r.t. �lit literals. Let S0 be a set of clauses
and S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BRσ-inference process. Then S0 is
unsatisfiable if and only if � ∈ Si for some i.

Lemma
The limit Sω is saturated.

Lemma
The limit Sω is logically equivalent to the initial set S0.

Lemma
A saturated set S of clauses is unsatisfiable if and only if � ∈ S.

Completeness of Ordered Resolution

Theorem (Completeness)
Take any well-founded ordering � and consider the selection function
σ that selects all maximal w.r.t. �lit literals. Let S0 be a set of clauses
and S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BRσ-inference process. Then S0 is
unsatisfiable if and only if � ∈ Si for some i.

Lemma
The limit Sω is saturated.

Lemma
The limit Sω is logically equivalent to the initial set S0.

Lemma
A saturated set S of clauses is unsatisfiable if and only if � ∈ S.

Corollaries

Completeness of Binary Resolution. Binary resolution is complete.
Compactness. Let S be a countably infinite set of clauses. Then S is
unsatisfiable if and only if it contains a finite unsatisfiable subset.
Note. The assumption of being countably infinite can be dropped.

Problem: search space grows too fast

Idea: remove some clauses from the search space.
We will consider later how clauses can be removed without
compromising completeness.

Inference Process with Deletion

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. I-inference;
2. deletion of a clause in Si , that is

Si+1 = Si − {C},

where C ∈ Si .

Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .

Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .

Deletion rules

Tautology: a clause of the form p ∨ ¬p ∨ C. Tautology deletion:
deletion of tautologies from the search space.
Finite multiset: like a set but elements may occur more than once.
Example: {1,2,2,5,5,5}. A clause can be considered as a multiset
of its literals.
A clause C1 is said to subsume any clause C1 ∨ C2, where C2 is
non-empty. In other words, C1 subsumes C2 if and only if C1 is a
submultiset of C2.
Subsumption deletion: deletion of subsumed clauses from the search
space.

Completeness with deletion rules

Subsumption and tautology deletion does not compromise
completeness of binary and ordered resolution.
That is, for every fair inference process with subsumption a tautology
deletion, if the initial set of clauses is unsatisfiable, then the limit of
the process contains the empty clause.

Example: inference process with deletion

(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input

(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)

(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) ¬p Fact (5)

(3) p ∨ ¬q input
(4) p ∨ q input
(6) ¬p Fact (5)

Example: inference process with deletion

(3) p ∨ ¬q input
(4) p ∨ q input
(6) ¬p Fact (5)

(3) p ∨ ¬q input
(4) p ∨ q input
(6) ¬p Fact (5)
(7) p ∨ p BR (3,4)

(3) p ∨ ¬q input
(4) p ∨ q input
(6) ¬p Fact (5)
(7) p ∨ p BR (3,4)
(8) p Fact (7)

(6) ¬p Fact (5)
(8) p Fact (7)

(6) ¬p Fact (5)
(8) p Fact (7)
(9) � BR (6,8)

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Prolog

Running Prolog at the school:

1. boot a computer using Linux;
2. start a terminal;
3. type sicstus in it

and the Sictus Prolog will start.
Running Prolog on your home computer/laptop:

I Download SWI Prolog and follow instructions.

Example of a Prolog program

I Terms:
I constants, variables (start with an upper-case letter or an

underscore);
I compound: name(arg1,. . . ,argk);
I Ground terms: terms with no variables

I Clauses:
I Rules: Head :- Goal1, . . . , Goalk .
I Facts: Head.

i.e. a rule without any goals or body
I Goals: :- Goal1, . . . , Goalk .

i.e. a rule without a head.

Examples of clauses

parent(john,juliet).
:- parent(john,X).
parent(X,juliet).
greater than(succ(X),zero).

Predicate definition: collection of rules with the same predicate (head
name).

ancestor(X,Y) :- mother(X,Y).
ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).
...

Examples of clauses

parent(john,juliet).
:- parent(john,X).
parent(X,juliet).
greater than(succ(X),zero).

Predicate definition: collection of rules with the same predicate (head
name).

ancestor(X,Y) :- mother(X,Y).
ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).
...

Examples of clauses

parent(john,juliet).
:- parent(john,X).
parent(X,juliet).
greater than(succ(X),zero).

Predicate definition: collection of rules with the same predicate (head
name).

ancestor(X,Y) :- mother(X,Y).
ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).
...

Rules

Meaning of a rule Head :- Goal1,...,Goaln:

I If Goal1 and Goal2 and . . . and Goalk all hold, then Head holds.

Program: a sequence of clauses.
ancestor(X,Y) :- father(X,Y).
father(X,Y) :- parent(X,Y), male(X).
parent(john,juliet).
male(john).

Queries:
:- ancestor(john,juliet).
:- father(john,juliet).
:- parent(john,juliet),male(john).

Rules

Meaning of a rule Head :- Goal1,...,Goaln:

I If Goal1 and Goal2 and . . . and Goalk all hold, then Head holds.

Program: a sequence of clauses.
ancestor(X,Y) :- father(X,Y).
father(X,Y) :- parent(X,Y), male(X).
parent(john,juliet).
male(john).

Queries:
:- ancestor(john,juliet).
:- father(john,juliet).
:- parent(john,juliet),male(john).

Rules

Meaning of a rule Head :- Goal1,...,Goaln:

I If Goal1 and Goal2 and . . . and Goalk all hold, then Head holds.

Program: a sequence of clauses.
ancestor(X,Y) :- father(X,Y).
father(X,Y) :- parent(X,Y), male(X).
parent(john,juliet).
male(john).

Queries:
:- ancestor(john,juliet).
:- father(john,juliet).
:- parent(john,juliet),male(john).

Prolog program with recursion

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).
parent(chaz,john).
parent(john,juliet).
:- ancestor(chaz,juliet).
:- parent(chaz,john),ancestor(john,juliet).
:- ancestor(john,juliet).
:- parent(john,juliet).

Goal with variables: find a substitution for the variables that makes
this goal derivable:
:- ancestor(chaz,X).

Prolog program with recursion

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).
parent(chaz,john).
parent(john,juliet).
:- ancestor(chaz,juliet).
:- parent(chaz,john),ancestor(john,juliet).
:- ancestor(john,juliet).
:- parent(john,juliet).

Goal with variables: find a substitution for the variables that makes
this goal derivable:
:- ancestor(chaz,X).

How does Prolog answer goals?

Search Strategy: process subgoals left-to-right, top-to-bottom (but
see later. . .)

Use the trace facility of Prolog.

How does Prolog answer goals?

Search Strategy: process subgoals left-to-right, top-to-bottom (but
see later. . .)

Use the trace facility of Prolog.

Built-in predicates

Built-in predicates which perform evaluation:
I operators: +, *, -, /
I comparison: <, >, <=, >=
I equality, inequality: =, ==, \==

I X = 2 * 3 * 7
I 42 = 2 * 3 * 7

I invoke evaluation:
I 42 is 2 * 3 * 7
I X is 2 * 3 * 7

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Propositional Logic and Infinite Domains

Consider simple propositions:

1. The successor of 0 is greater than 0;
2. The successor of 1 is greater than 1;
3. The successor of 2 is greater than 2;
4. The successor of 3 is greater than 3;
5. The successor of 4 is greater than 4;
6. . . .

We can use them in propositional logic. But how can we express the
property

I The successor of every natural number is greater than this
number?

To express it we need a conjunction of an infinite number of
propositions.

First order logic

In first order logic we can express properties of the form for all . . .
and there exists . . . using quantifiers.
For example, to express the successor property we can

I introduce a function symbol succ to represent the successor
function, so that succ(x) denotes the successor of x ;

I introduce a predicate symbol > to represent the order on
numbers, so that x > y denotes that x is greater than y ;

I use a quantifier ∀ to express that the successor of every number
is greater than this number as (∀x)(succ(x) > x).

Syntax: the Language

Signature Σ: a set of
I constants;
I function symbols;
I predicate symbols.

Each function symbol and predicate symbol has an associated arity
(the number of arguments).
In addition to elements of the signature, the language will use a
countably infinite set of variables.
Example: succ(x) > x , here

I x is a variable;
I succ is a function symbol of arity 1 (unary function symbol);
I > is a predicate symbol of arity 2 (binary predicate symbol).

Predicate symbols are sometime called relation symbols.

Syntax: Terms

For convenience we fix a signature.
Term:

I every variable is a term;
I every constant is a term;
I if f is a function symbol of arity n and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.
Examples:

I x ;
I 0;
I succ(succ(x));
I x + y (here the binary function symbol + is written in the infix

notation).

Two notations

Prolog notation:
I Variables start with upper-case letters: X,Man.
I Constants start with lower-case letters: x,man.

Math notation:
I Variables: x , y , z,u, v ,w .
I Constants: a,b, c,d ,e.

First-Order Formula

I If p is a predicate symbol of arity n and t1, . . . , tn are terms, then
p(t1, . . . , tn) is a formula, also called an atomic formula, or simply
atom.

I >nd ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.
I If A is a formula and x is a variable then (∀x)A and (∃x)A are

formulas.

Quantifiers

(∀x)A: A holds for all x .
(∃x)A: A holds for some x or there exists some x such that A.
∀: universal quantifier.
∃: existential quantifier.

Free and Bound Variables

Variable Binding:
I x is bound in ∀x F or ∃x F .
I F is the scope of x
I A variable which is not bound is free.

A formula with no free variables is called closed.

Semantics: Structure

Structure M = (D,R,F ,C):
I domain D (non-empty)
I R: assign k -ary relation PM on D to each k -ary predicate symbol

P of L;
I F : assign k -ary function f M on D to each k -ary function symbol f

of L;
I C: assign element aM from D to each constant symbol a of L.

Value assignment s over M: maps variables to domain elements, that
is, s(x) ∈ D.

Values for Terms

t is given value tM,s ∈ D:

Term Value in D
constant a aM,s = aM

variable x xM,s = s(x)

n-ary function f f (t1, t2, . . . , tn)M,s = f M(tM,s
1 , tM,s

2 , . . . , tM,s
n)

(t1, . . . , tn are terms)

Notation

Define

s[x ← d](y)
def⇔
{

s(x), if x 6= y ;
d , if x = y .

Semantics: Truth

Truth values for formulae: vM,s(A) ∈ {1,0}

Logical Symbol Truth Value
constant > vM,s(>) = 1
constant ⊥ vM,s(⊥) = 0
predicate vM,s(P(t1, . . . , tn)) = 1 iff (tM,s

1 , . . . , tM,s
n) ∈ PM

connective (e.g) vM,s(F ∧G) = 1 iff vM,s(F) = 1 and vM,s(G) = 1
quantifier ∀ vM,s(∀xF) = 1 iff for all d ∈ D, vM,s[x←d](F) = 1
quantifier ∃ vM,s(∃xF) = 1 iff for some d ∈ D, vM,s[x←d](F) = 1

If vM,s(F) = 1, write M, s |= F

Satisfiability and validity

If A is closed, then vM,s(A) is independent of s; so we write M |= A
and say that is true in M.

I If a formula A is true in M we say that M satisfies A and that M is
a model of A, denoted by M |= A.

I A is satisfiable (valid) if it is true in some (every) structure.
I Two formulas A and B are called equivalent, denoted A ≡ B if

they have the same models.

Example
A = ∀x∀y(q(x , y)→ (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))
Take the tructure M = (people, {q 7→ ancestor , p 7→ parent}, ∅, ∅) and any
value assignment s:

I vM,s(∀x∀y(q(x , y)→ (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D,

vM,s[x←d](∀y(q(x , y)→ (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D,

vM,s[x←d][y←d′](q(x , y)→ (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y)))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if vM,s[x 7→d][y 7→d′](q(x , y)) = 1

then vM,s[x 7→d][y 7→d′](p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

vM,s[x 7→d][y 7→d′](p(x , y)) or vM,s[x 7→d][y 7→d′](∃z(p(x , z) ∧ q(z, y))) iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d][y 7→d′][z 7→d′′](p(x , z) ∧ q(z, y)) = 1 iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d][y 7→d′][z 7→d′′](p(x , z)) = 1 and vM,s[x 7→d][y 7→d′][z 7→d′′](q(z, y)) = 1
iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that (d , d ′′) ∈ parent and
(d ′′, d ′) ∈ ancestor iff

I for all people d and d ′, if d is an ancestor of d ′, then either d ′ is a parent
of d , or there exists another person d ′′ such that d ′′ is a parent of d and
d ′′ is an ancestor of d ′.

I which is ‘clearly’ true, since ancestor is the transitive closure of parent .

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.
I Empty clause, denoted by �: n = 0 (the empty clause is false in

every interpretation).
I Unit clause: n = 1.

When we consider clauses we assume that the order of literals in
them is irrelevant.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either >,
or ⊥, or is built from literals using only ∧, ∨, ∀ and ∃.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either >,
or ⊥, or is built from literals using only ∧, ∨, ∀ and ∃.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.

NNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬(∀x)A ⇒ (∃x)¬A,
¬(∃x)A ⇒ (∀x)¬A,
¬¬A ⇒ A

Rectified formulas

Rectified formula F :
I no variable appears both free and bound in F ;
I for every variable x , the formula F contains at most one

occurrence of quantifiers ∀x or ∃x .
Any formula can be transformed into a rectified formula by renaming
bound variables.

Rectification: Example

p(x)→ ∃x(p(x) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x2(p(x2) ∨ r → ¬p(x2)))

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

∀x(tree(x)→ ∃y(root(y , x))). (∗)

Then we can introduce a function, say rootof that gives the root of a
tree and write

∀x(tree(x)→ root(rootof(x), x)). (∗∗)

Note that (∗) is a logical consequence of (∗∗).

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

∀x(tree(x)→ ∃y(root(y , x))). (∗)

Then we can introduce a function, say rootof that gives the root of a
tree and write

∀x(tree(x)→ root(rootof(x), x)). (∗∗)

Note that (∗) is a logical consequence of (∗∗).

Skolemisation

Let A be a closed rectified formula in NNF and (∃x)B be a subformula
of A. Let (∀x1), . . . , (∀xn) be all universal quantifiers such that (∃x)B
is in the scope of these quantifiers. Then:

1. remove (∃x) from A.
2. replace x everywhere in A by f (x1, . . . , xn), where f is a new

function symbol.

Skolemisation does not preserve equivalence but preserves
satisfiability.

CNF Transformation

Take a first-order formula F .
1. transform it into NNF;
2. rectify it;
3. skolemise it;
4. remove all universal quantifiers;
5. transform to CNF the same way as propositional formulas.

CNF Transformation

Universal closure of a formula A is a formula

(∀x1) . . . (∀xn)A,

denoted by ∀A, where x1, . . . , xn are all free variables of A.

CNF transformation transforms a closed formula F into a set of
clauses C1, . . . ,Cn such that F is satisfiable if and only if so is the set
of formulas ∀C1, . . . ,∀Cn.

CNF Transformation

Universal closure of a formula A is a formula

(∀x1) . . . (∀xn)A,

denoted by ∀A, where x1, . . . , xn are all free variables of A.

CNF transformation transforms a closed formula F into a set of
clauses C1, . . . ,Cn such that F is satisfiable if and only if so is the set
of formulas ∀C1, . . . ,∀Cn.

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Example

Suppose we want to prove (establish validity of)

(∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y).

It is valid if and only if its negation

¬((∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y))

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

p(x ,a)
¬p(b, y).

Example

Suppose we want to prove (establish validity of)

(∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y).

It is valid if and only if its negation

¬((∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y))

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

p(x ,a)
¬p(b, y).

Example

Suppose we want to prove (establish validity of)

(∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y).

It is valid if and only if its negation

¬((∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y))

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

p(x ,a)
¬p(b, y).

Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).

Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).

Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).

Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).

Ideas

Note that we established unsatisfiability by

I Substituting terms for variables, e.g. b for x in p(x ,a);
I Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?

Ideas

Note that we established unsatisfiability by

I Substituting terms for variables, e.g. b for x in p(x ,a);
I Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Exercise

Suppose we have two substitutions

{x1 7→ s1, . . . , xm 7→ sm} and
{y1 7→ t1, . . . , yn 7→ tn}.

How can we write their composition using the same notation?

Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.

Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.

Lifting, Idea
The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible? Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).

Lifting, Idea
The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible? Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).

Lifting, Idea
The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible? Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).

What should we lift?

I Selection function σ.
I Calculus BRσ.
I Ordering �, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms.

What should we lift?

I Selection function σ.
I Calculus BRσ.
I Ordering �, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms.

Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.

Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.

Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ.
In a similar way can define a most general unifier.
Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.

Unification
Let E be a set of equations. An isolated equation in E is any equation x = t
in it such that x has exactly one occurrence in E .

input: a finite set of equations E
output: a solution to E or failure.
begin

while there exists a non-isolated equation (s = t) ∈ E do
case (s, t) of
(t , t)⇒ remove this equation from E
(x , t)⇒ if x occurs in t then halt with failure

else replace x by t in all other equations of E
(t , x)⇒ replace this equation by x = t

and do the same as in the case (x , t)
(c, d)⇒ halt with failure
(c, f (t1, . . . , tn))⇒ halt with failure
(f (t1, . . . , tn), c)⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn))⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn))⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end while
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end

Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}

Occurs check

I The check “x occurs in t” is called an occurs check.
I In Prolog, the predicate = implements unification without occurs

check.
I There is also a predicate (and a command) for unification with

occurs check.

Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.

Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.

Exercise

Consider a trivial system of equations {} or {a = a}.

Which substitutions are solutions to it?

What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations {} or {a = a}.

Which substitutions are solutions to it?

What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations {} or {a = a}.

Which substitutions are solutions to it?

What is the set of most general solutions to it?

Properties

Theorem
Let C be a clause and E a set of equations. Then

{D ∈ C∗ | ∃θ(Cθ = D and θ is a solution to E)} = (Cmgs(E))∗.

Outline
Introduction

Correctness of Computer Systems
Theorem Proving

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Resolution
Inference Systems
Soundness and Completeness
Literal Selection and Orderings
Inference Processes
Redundancy Elimination

Prolog
First-Order Logic

Syntax and Semantics
Clausal Forms

Substitutions and Unification
Substitutions
Lifting
Unification

Resolution for First-Order Logic
Resolution

Binary Resolution System, Non-Ground Case

Binary resolution is the following inference rule:

A ∨ C ¬B ∨ D
(C ∨ D)mgu(A,B)

(BR),

Factoring is the following inference rule:

A ∨ B ∨ C
(A ∨ C)mgu(A,B)

(Fact),

Soundness and Completeness

BR is sound and complete, that is, if a set of clauses is unsatisfiable,
then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a
logical consequence of its premises.

Completeness can be proved using completeness of propositional
resolution and lifting.

Soundness and Completeness

BR is sound and complete, that is, if a set of clauses is unsatisfiable,
then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a
logical consequence of its premises.

Completeness can be proved using completeness of propositional
resolution and lifting.

Soundness and Completeness

BR is sound and complete, that is, if a set of clauses is unsatisfiable,
then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a
logical consequence of its premises.

Completeness can be proved using completeness of propositional
resolution and lifting.

Ordered resolution?

Binary resolution with arbitrary selection is incomplete.

To define ordered resolution one has to define ordering for
non-ground clauses in a way so that they also work for their ground
instances.

Ordered resolution?

Binary resolution with arbitrary selection is incomplete.

To define ordered resolution one has to define ordering for
non-ground clauses in a way so that they also work for their ground
instances.

A problem

Is the following set of clauses unsatisfiable?

p(x ,a)
¬p(b, x)?

Yes, since clauses denote their universal closures:

(∀x)p(x ,a)
(∀x)¬p(b, x).

But no rule of the resolution system is applicable to these clauses.

A problem

Is the following set of clauses unsatisfiable?

p(x ,a)
¬p(b, x)?

Yes, since clauses denote their universal closures:

(∀x)p(x ,a)
(∀x)¬p(b, x).

But no rule of the resolution system is applicable to these clauses.

A problem

Is the following set of clauses unsatisfiable?

p(x ,a)
¬p(b, x)?

Yes, since clauses denote their universal closures:

(∀x)p(x ,a)
(∀x)¬p(b, x).

But no rule of the resolution system is applicable to these clauses.

Renaming away

The domain of a substitution θ is the set of variables {x | θ(x) 6= x} is
finite.
The range of θ is the set of terms {xθ | xθ 6= x}.

A substitution θ is called renaming if (three equivalent
characterisations)

I the domain of θ coincides with its range.
I θ has an inverse σ (that is, θ ◦ σ = σ ◦ θ = {}).
I there exists an n such that θn = {}.

A variant of a term (atom, literal, clause) t is any term obtained from t
by appying a renaming.

Renaming away

The domain of a substitution θ is the set of variables {x | θ(x) 6= x} is
finite.
The range of θ is the set of terms {xθ | xθ 6= x}.

A substitution θ is called renaming if (three equivalent
characterisations)

I the domain of θ coincides with its range.
I θ has an inverse σ (that is, θ ◦ σ = σ ◦ θ = {}).
I there exists an n such that θn = {}.

A variant of a term (atom, literal, clause) t is any term obtained from t
by appying a renaming.

Renaming away

The domain of a substitution θ is the set of variables {x | θ(x) 6= x} is
finite.
The range of θ is the set of terms {xθ | xθ 6= x}.

A substitution θ is called renaming if (three equivalent
characterisations)

I the domain of θ coincides with its range.
I θ has an inverse σ (that is, θ ◦ σ = σ ◦ θ = {}).
I there exists an n such that θn = {}.

A variant of a term (atom, literal, clause) t is any term obtained from t
by appying a renaming.

Hidden rule: renaming away

Renaming E1 away from E2: replace E1 by its variant E ′1 so that E ′1
and E2 have no common variables.

Before applying resolution to two clauses C1 and C2 we should
always rename C1 away from C2.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).

Hidden rule: renaming away

Renaming E1 away from E2: replace E1 by its variant E ′1 so that E ′1
and E2 have no common variables.

Before applying resolution to two clauses C1 and C2 we should
always rename C1 away from C2.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).

Hidden rule: renaming away

Renaming E1 away from E2: replace E1 by its variant E ′1 so that E ′1
and E2 have no common variables.

Before applying resolution to two clauses C1 and C2 we should
always rename C1 away from C2.

Renaming is sometimes called standardising apart (especially in the
logic programming literature).

Example

(1) ¬p(x) ∨ ¬q(y) input
(2) ¬p(x) ∨ q(y) input
(3) p(x) ∨ ¬q(y) input
(4) p(x) ∨ q(y) input
(5) ¬p(x) ∨ ¬p(y) BR (1,2)
(6) ¬p(x) Fact (5)
(7) p(x) ∨ p(y) BR (3,4)
(8) p(x) Fact (7)
(9) � BR (6,8)

	Introduction
	Correctness of Computer Systems
	Theorem Proving

	Propositional Logic
	Syntax
	Semantics
	Propositional Satisfiability
	Clausal Forms
	Clausal Form and Definitional Transformation

	Resolution
	Inference Systems
	Soundness and Completeness
	Literal Selection and Orderings
	Inference Processes
	Redundancy Elimination

	Prolog
	First-Order Logic
	Syntax and Semantics
	Clausal Forms

	Substitutions and Unification
	Substitutions
	Lifting
	Unification

	Resolution for First-Order Logic
	Resolution

