Outline

Resolution for First-Order Logic Resolution

Binary Resolution System, Non-Ground Case

Binary resolution is the following inference rule:

$$\frac{\underline{A} \lor C \quad \underline{\neg B} \lor D}{(C \lor D)mgu(A, B)}$$
(BR),

Factoring is the following inference rule:

$$\frac{\underline{A} \vee \underline{B} \vee C}{(A \vee C)mgu(A, B)}$$
(Fact),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \mathbb{BR} is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Completeness can be proved using completeness of propositional resolution and lifting.

(日) (日) (日) (日) (日) (日) (日)

 \mathbb{BR} is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Completeness can be proved using completeness of propositional resolution and lifting.

(日) (日) (日) (日) (日) (日) (日)

 \mathbb{BR} is sound and complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Soundness is evident since the conclusion of any inference rule is a logical consequence of its premises.

Completeness can be proved using completeness of propositional resolution and lifting.

(ロ) (同) (三) (三) (三) (○) (○)

Ordered resolution?

Binary resolution with arbitrary selection is incomplete.

To define ordered resolution one has to define ordering for non-ground clauses in a way so that they also work for their ground instances.

Binary resolution with arbitrary selection is incomplete.

To define ordered resolution one has to define ordering for non-ground clauses in a way so that they also work for their ground instances.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A problem

Is the following set of clauses unsatisfiable?

p(x, a) $\neg p(b, x)?$

Yes, since clauses denote their universal closures:

 $(\forall x)p(x,a)$ $(\forall x)\neg p(b,x).$

(日) (日) (日) (日) (日) (日) (日)

But no rule of the resolution system is applicable to these clauses.

A problem

Is the following set of clauses unsatisfiable?

p(x, a) $\neg p(b, x)?$

Yes, since clauses denote their universal closures:

 $(\forall x)p(x,a)$ $(\forall x)\neg p(b,x).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

But no rule of the resolution system is applicable to these clauses.

A problem

Is the following set of clauses unsatisfiable?

p(x, a) $\neg p(b, x)?$

Yes, since clauses denote their universal closures:

 $(\forall x)p(x,a)$ $(\forall x)\neg p(b,x).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

But no rule of the resolution system is applicable to these clauses.

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite. The range of θ is the set of terms $\{x\theta \mid x\theta \neq x\}$.

A substitution θ is called renaming if (three equivalent characterisations)

- the domain of θ coincides with its range.
- θ has an inverse σ (that is, $\theta \circ \sigma = \sigma \circ \theta = \{\}$).
- there exists an *n* such that $\theta^n = \{\}$.

A variant of a term (atom, literal, clause) t is any term obtained from t by appying a renaming.

(日) (日) (日) (日) (日) (日) (日)

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite.

```
The range of \theta is the set of terms \{x\theta \mid x\theta \neq x\}.
```

A substitution θ is called renaming if (three equivalent characterisations)

- the domain of θ coincides with its range.
- θ has an inverse σ (that is, $\theta \circ \sigma = \sigma \circ \theta = \{\}$).
- there exists an *n* such that $\theta^n = \{\}$.

A variant of a term (atom, literal, clause) t is any term obtained from t by appying a renaming.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Renaming away

The domain of a substitution θ is the set of variables $\{x \mid \theta(x) \neq x\}$ is finite.

```
The range of \theta is the set of terms \{x\theta \mid x\theta \neq x\}.
```

A substitution θ is called renaming if (three equivalent characterisations)

- the domain of θ coincides with its range.
- θ has an inverse σ (that is, $\theta \circ \sigma = \sigma \circ \theta = \{\}$).
- there exists an *n* such that $\theta^n = \{\}$.

A variant of a term (atom, literal, clause) t is any term obtained from t by appying a renaming.

Hidden rule: renaming away

Renaming E_1 away from E_2 : replace E_1 by its variant E'_1 so that E'_1 and E_2 have no common variables.

Before applying resolution to two clauses C_1 and C_2 we should always rename C_1 away from C_2 .

Renaming is sometimes called standardising apart (especially in the logic programming literature).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Renaming E_1 away from E_2 : replace E_1 by its variant E'_1 so that E'_1 and E_2 have no common variables.

Before applying resolution to two clauses C_1 and C_2 we should always rename C_1 away from C_2 .

Renaming is sometimes called standardising apart (especially in the logic programming literature).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Renaming E_1 away from E_2 : replace E_1 by its variant E'_1 so that E'_1 and E_2 have no common variables.

Before applying resolution to two clauses C_1 and C_2 we should always rename C_1 away from C_2 .

Renaming is sometimes called standardising apart (especially in the logic programming literature).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example

(1)
$$\neg p(x) \lor \neg q(y)$$
 input
(2) $\neg p(x) \lor q(y)$ input
(3) $p(x) \lor \neg q(y)$ input
(4) $p(x) \lor q(y)$ input
(5) $\neg p(x) \lor \neg p(y)$ BR
(6) $\neg p(x)$ Fact
(7) $p(x) \lor p(y)$ BR
(8) $p(x)$ Fact
(9) \Box BR

(1,2) (5) (3,4)

(7) (6,8)