Outline

First-Order Logic
Syntax and Semantics
Clausal Forms

Propositional Logic and Infinite Domains

Consider simple propositions:

1. The successor of 0 is greater than 0;

The successor of 1 is greater than 1;

The successor of 2 is greater than 2;

The successor of 3 is greater than 3;

The successor of 4 is greater than 4;

6. ...

We can use them in propositional logic. But how can we express the
property

» The successor of every natural number is greater than this
number?

ISl A

To express it we need a conjunction of an infinite number of
propositions.

First order logic

In first order logic we can express properties of the form for all .. .
and there exists ... using quantifiers.
For example, to express the successor property we can

» introduce a function symbol succ to represent the successor
function, so that succ(x) denotes the successor of x;

» introduce a predicate symbol > to represent the order on
numbers, so that x > y denotes that x is greater than y;

» use a quantifier V to express that the successor of every number
is greater than this number as (Vx)(succ(x) > x).

Syntax: the Language

Signature X: a set of
» constants;
» function symbols;
» predicate symbols.

Each function symbol and predicate symbol has an associated arity
(the number of arguments).
In addition to elements of the signature, the language will use a
countably infinite set of variables.
Example: succ(x) > x, here

» x is a variable;

» succ is a function symbol of arity 1 (unary function symbol);

» > is a predicate symbol of arity 2 (binary predicate symbol).
Predicate symbols are sometime called relation symbols.

Syntax: Terms

For convenience we fix a signature.
Term:

» every variable is a term;
» every constant is a term;

» if f is a function symbol of arity nand ¢, ..., t, are terms, then
f(ty,...,ty) is aterm.
Examples:
> X;
» 0;

» succ(suce(x));

» x + y (here the binary function symbol + is written in the infix
notation).

Two notations

Prolog notation:
» Variables start with upper-case letters: x, Man.
» Constants start with lower-case letters: x, man.
Math notation:
» Variables: x,y,z,u, v, w.
» Constants: a, b, c, d, e.

First-Order Formula

» If pis a predicate symbol of arity nand £, ..., t, are terms, then
p(ti,...,t,) is a formula, also called an atomic formula, or simply
atom.

» Tnd L are formulas.

» If Aq,..., A, are formulas, where n > 2, then (A1 A ... A Ap) and
(A1 V...V A,) are formulas.

» If Ais a formula, then (-A) is a formula.
» If Aand B are formulas, then (A — B) and (A < B) are formulas.

» If Ais a formula and x is a variable then (Vx)A and (3x)A are
formulas.

Quantifiers

(¥x)A: A holds for all x.

(3x)A: Aholds for some x or there exists some x such that A.
V: universal quantifier.

3: existential quantifier.

Free and Bound Variables

Variable Binding:
» xis boundinVx F or dx F.
» [is the scope of x
» A variable which is not bound is free.
A formula with no free variables is called closed.

Semantics: Structure

Structure M = (D, R, F, C):
» domain D (non-empty)

» R: assign k-ary relation PV on D to each k-ary predicate symbol
P of L;

» F: assign k-ary function f on D to each k-ary function symbol f
of L;

» C: assign element 2" from D to each constant symbol a of L.

Value assignment s over M: maps variables to domain elements, that
is, s(x) € D.

Values for Terms

tis given value t"5 ¢ D:

Term | Value in D

constant a avs = g¥

variable x xMs = s(x)

n-ary function f | f(t;, to, ... t,)"s = f"”(t{v”s, tév”s., s

(ti,...,t, are terms)

Notation

Define

oo (50 112

Semantics: Truth

Truth values for formulae: vy s(A) € {1,0}

Logical Symbol | Truth Value

constant T wns(T) = 1

constant L vis(L) =

predicate vi.s(P (t1, Lo t)) =1 (S ey e PM
connective (e.g) | vm.s(F A G) = 1 iff viys(F) =1and vy s(G) =1
quantifier vV vu,s(VXF) = 1iffforall d € D, viy six—a)(F) = 1
quantifier 3 Vi,s(3xF) = 1 iff for some d € D, iy gjx—q)(F) = 1

If vius(F)=1,write M,s = F

Satisfiability and validity

If Ais closed, then vy, s(A) is independent of s; so we write M = A
and say that is true in M.
» If a formula A is true in M we say that M satisfies A and that M is
a model of A, denoted by M = A.
» Ais satisfiable (valid) if it is true in some (every) structure.
» Two formulas A and B are called equivalent, denoted A = B if
they have the same models.

Example

A=Vxvy(aq(x,y) — (p(x,y) vV 3z(p(x, z) A q(z, y))
Take the tructure M = (people, {q — ancestor, p — parent},),) and any
value assignment s:

v

Vs (VXY (G(x, ¥) — (p(x,¥) V 32(p(x, 2) A q(2,¥))))) = 1 iff
forall d € D,

Vinsix—a) (VY (q(X, ¥) — (p(x, ¥) v 3z(p(x, 2) A q(2,¥))))) = 1 iff
foralld € D, forall d' € D,

Vi six—ay—a1(Q(X,) — (p(x, y) vV 3z(p(x, 2) A q(z, Y)))) = 1iff
foralld € D, forall d' € D, if vy sjxayyaa(Q(X, ¥)) =

then VM.S[X>—>d][}’>—>d’](p(X7 y) 4 3Z(:O(Xv Z) A q(Z ,V))) =1 Iff

foralld € D, forall d’ € D, if (d,d") € ancestor then either

Vi six—d)ly—a] (P(X, ¥)) OF Vi sixay—ar (32(P(X, 2) A q(2, y))) iff
foralld € D, forall &’ € D, if (d,d") € ancestor then either

(d,d") € parent or there exists a d” € D, such that

Vi s dily—a'liz—a7 (P(X, 2) A q(2, y)) = 1 iff

foralld € D, forall d’ € D, if (d,d") € ancestor then either

(d, d") € parent or there exists a d” € D, such that
_¥?4,5[de1[de/][sz//](p(x +2)) = 1.and Vusix—diyea)iz—a)(4(2,) = 1

i

foralld € D, forall d’ € D, if (d,d") € ancestor then either

(d,d") € parent or there exists a d’ € D, such that (d-d") € parent and

Literal, clause

>

Literal: either an atom p (positive literal) or its negation —p
(negative literal).

The complementary literal to L:
%t L, if Lis positive;
p, if L has the form —p.
In other words, p and —p are complementary.
Clause: a disjunction Ly VvV ...V L,, n > 0 of literals.

Empty clause, denoted by [(I: n = 0 (the empty clause is false in
every interpretation).

Unit clause: n= 1.

When we consider clauses we assume that the order of literals in
them is irrelevant.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either T,
or L, or is built from literals using only A, v, ¥ and 3.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either T,
or L, or is built from literals using only A, v, ¥ and 3.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.

NNF transformation

A< B
A—B
-(AA B)
-(AV B)
—(Vx)A
—(3Ix)A
——A

S R R

(=AV B) A (~BV A),
-AV B,

-AV =B,

-AA =B,

(HX)ﬁA.,

(Vx)—A,

A

Rectified formulas

Rectified formula F:
» no variable appears both free and bound in F;

» for every variable x, the formula F contains at most one
occurrence of quantifiers vx or 3x.

Any formula can be transformed into a rectified formula by renaming
bound variables.

Rectification: Example

p(x) — 3Ix(p(x) AVx(p(x) V r — —p(x))) =
p(x) — 3xi1(p(x1) AVX(p(x) V r — =p(x))) =
p(x) — 3x1(p(x1) A Vx2(p(X2) V r — =p(X2)))

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

Vx(tree(x) — Jy(root(y, x))). (%)

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

Vx(tree(x) — Jy(root(y, x))). (%)

Then we can introduce a function, say rootof that gives the root of a
tree and write

Vx(tree(x) — rooft(rootof(x), x)). (%)

Note that (x) is a logical consequence of ().

Skolemisation

Let A be a closed rectified formula in NNF and (3x)B be a subformula
of A. Let (Vx¢),..., (Vxn) be all universal quantifiers such that (3x)B

is in the scope of these quantifiers. Then:

1. remove (3x) from A.
2. replace x everywhere in Aby f(x1,...,x,), where f is a new
function symbol.

Skolemisation does not preserve equivalence but preserves
satisfiability.

CNF Transformation

Take a first-order formula F.
1. transform it into NNF;
. rectify it;
skolemise it;
remove all universal quantifiers;
transform to CNF the same way as propositional formulas.

A

CNF Transformation

Universal closure of a formula A is a formula

(Vx1) ... (Vxn)A,

denoted by VA, where x1, ..., x, are all free variables of A.

CNF Transformation

Universal closure of a formula A is a formula

(Vx1) ... (VXn)A,
denoted by VA, where x1, ..., x, are all free variables of A.
CNF transformation transforms a closed formula F into a set of

clauses Cy, ..., C, such that F is satisfiable if and only if so is the set
of formulas VCy,...,VC,.

	First-Order Logic
	Syntax and Semantics
	Clausal Forms

