
Outline

First-Order Logic
Syntax and Semantics
Clausal Forms

Propositional Logic and Infinite Domains

Consider simple propositions:

1. The successor of 0 is greater than 0;
2. The successor of 1 is greater than 1;
3. The successor of 2 is greater than 2;
4. The successor of 3 is greater than 3;
5. The successor of 4 is greater than 4;
6. . . .

We can use them in propositional logic. But how can we express the
property

I The successor of every natural number is greater than this
number?

To express it we need a conjunction of an infinite number of
propositions.

First order logic

In first order logic we can express properties of the form for all . . .
and there exists . . . using quantifiers.
For example, to express the successor property we can

I introduce a function symbol succ to represent the successor
function, so that succ(x) denotes the successor of x ;

I introduce a predicate symbol > to represent the order on
numbers, so that x > y denotes that x is greater than y ;

I use a quantifier ∀ to express that the successor of every number
is greater than this number as (∀x)(succ(x) > x).

Syntax: the Language

Signature Σ: a set of
I constants;
I function symbols;
I predicate symbols.

Each function symbol and predicate symbol has an associated arity
(the number of arguments).
In addition to elements of the signature, the language will use a
countably infinite set of variables.
Example: succ(x) > x , here

I x is a variable;
I succ is a function symbol of arity 1 (unary function symbol);
I > is a predicate symbol of arity 2 (binary predicate symbol).

Predicate symbols are sometime called relation symbols.

Syntax: Terms

For convenience we fix a signature.
Term:

I every variable is a term;
I every constant is a term;
I if f is a function symbol of arity n and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.
Examples:

I x ;
I 0;
I succ(succ(x));
I x + y (here the binary function symbol + is written in the infix

notation).

Two notations

Prolog notation:
I Variables start with upper-case letters: X,Man.
I Constants start with lower-case letters: x,man.

Math notation:
I Variables: x , y , z, u, v , w .
I Constants: a, b, c, d , e.

First-Order Formula

I If p is a predicate symbol of arity n and t1, . . . , tn are terms, then
p(t1, . . . , tn) is a formula, also called an atomic formula, or simply
atom.

I >nd ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.
I If A is a formula and x is a variable then (∀x)A and (∃x)A are

formulas.

Quantifiers

(∀x)A: A holds for all x .
(∃x)A: A holds for some x or there exists some x such that A.
∀: universal quantifier.
∃: existential quantifier.

Free and Bound Variables

Variable Binding:
I x is bound in ∀x F or ∃x F .
I F is the scope of x
I A variable which is not bound is free.

A formula with no free variables is called closed.

Semantics: Structure

Structure M = (D, R, F , C):
I domain D (non-empty)
I R: assign k -ary relation PM on D to each k -ary predicate symbol

P of L;
I F : assign k -ary function f M on D to each k -ary function symbol f

of L;
I C: assign element aM from D to each constant symbol a of L.

Value assignment s over M: maps variables to domain elements, that
is, s(x) ∈ D.

Values for Terms

t is given value tM,s ∈ D:

Term Value in D
constant a aM,s = aM

variable x xM,s = s(x)

n-ary function f f (t1, t2, . . . , tn)M,s = f M(tM,s
1 , tM,s

2 , . . . , tM,s
n)

(t1, . . . , tn are terms)

Notation

Define

s[x ← d](y)
def⇔

{
s(x), if x 6= y ;
d , if x = y .

Semantics: Truth

Truth values for formulae: vM,s(A) ∈ {1, 0}

Logical Symbol Truth Value
constant > vM,s(>) = 1
constant ⊥ vM,s(⊥) = 0
predicate vM,s(P(t1, . . . , tn)) = 1 iff (tM,s

1 , . . . , tM,s
n) ∈ PM

connective (e.g) vM,s(F ∧G) = 1 iff vM,s(F) = 1 and vM,s(G) = 1
quantifier ∀ vM,s(∀xF) = 1 iff for all d ∈ D, vM,s[x←d](F) = 1
quantifier ∃ vM,s(∃xF) = 1 iff for some d ∈ D, vM,s[x←d](F) = 1

If vM,s(F) = 1, write M, s |= F

Satisfiability and validity

If A is closed, then vM,s(A) is independent of s; so we write M |= A
and say that is true in M.

I If a formula A is true in M we say that M satisfies A and that M is
a model of A, denoted by M |= A.

I A is satisfiable (valid) if it is true in some (every) structure.
I Two formulas A and B are called equivalent, denoted A ≡ B if

they have the same models.

Example
A = ∀x∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))
Take the tructure M = (people, {q 7→ ancestor , p 7→ parent}, ∅, ∅) and any
value assignment s:

I vM,s(∀x∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D,

vM,s[x←d](∀y(q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D,

vM,s[x←d][y←d′](q(x , y) → (p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y)))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if vM,s[x 7→d][y 7→d′](q(x , y)) = 1

then vM,s[x 7→d][y 7→d′](p(x , y) ∨ ∃z(p(x , z) ∧ q(z, y))) = 1 iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

vM,s[x 7→d][y 7→d′](p(x , y)) or vM,s[x 7→d][y 7→d′](∃z(p(x , z) ∧ q(z, y))) iff
I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either

(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d][y 7→d′][z 7→d′′](p(x , z) ∧ q(z, y)) = 1 iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that
vM,s[x 7→d][y 7→d′][z 7→d′′](p(x , z)) = 1 and vM,s[x 7→d][y 7→d′][z 7→d′′](q(z, y)) = 1
iff

I for all d ∈ D, for all d ′ ∈ D, if (d , d ′) ∈ ancestor then either
(d , d ′) ∈ parent or there exists a d ′′ ∈ D, such that (d , d ′′) ∈ parent and
(d ′′, d ′) ∈ ancestor iff

I for all people d and d ′, if d is an ancestor of d ′, then either d ′ is a parent
of d , or there exists another person d ′′ such that d ′′ is a parent of d and
d ′′ is an ancestor of d ′.

I which is ‘clearly’ true, since ancestor is the transitive closure of parent .

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.
I Empty clause, denoted by �: n = 0 (the empty clause is false in

every interpretation).
I Unit clause: n = 1.

When we consider clauses we assume that the order of literals in
them is irrelevant.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either >,
or ⊥, or is built from literals using only ∧, ∨, ∀ and ∃.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.

Negation Normal Form

A formula A is in negation normal form, or simply NNF, if it is either >,
or ⊥, or is built from literals using only ∧, ∨, ∀ and ∃.

A formula B is called a negation normal form of a formula A if B is
equivalent to A and B is in negation normal form.

NNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬(∀x)A ⇒ (∃x)¬A,
¬(∃x)A ⇒ (∀x)¬A,
¬¬A ⇒ A

Rectified formulas

Rectified formula F :
I no variable appears both free and bound in F ;
I for every variable x , the formula F contains at most one

occurrence of quantifiers ∀x or ∃x .
Any formula can be transformed into a rectified formula by renaming
bound variables.

Rectification: Example

p(x)→ ∃x(p(x) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x(p(x) ∨ r → ¬p(x)))⇒
p(x)→ ∃x1(p(x1) ∧ ∀x2(p(x2) ∨ r → ¬p(x2)))

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

∀x(tree(x)→ ∃y(root(y , x))). (∗)

Then we can introduce a function, say rootof that gives the root of a
tree and write

∀x(tree(x)→ root(rootof(x), x)). (∗∗)

Note that (∗) is a logical consequence of (∗∗).

Skolemisation: Choice Functions

We would like to get rid of existential quantifiers using choice
functions, or witness functions.
Consider an example. We know that every tree has a root:

∀x(tree(x)→ ∃y(root(y , x))). (∗)

Then we can introduce a function, say rootof that gives the root of a
tree and write

∀x(tree(x)→ root(rootof(x), x)). (∗∗)

Note that (∗) is a logical consequence of (∗∗).

Skolemisation

Let A be a closed rectified formula in NNF and (∃x)B be a subformula
of A. Let (∀x1), . . . , (∀xn) be all universal quantifiers such that (∃x)B
is in the scope of these quantifiers. Then:

1. remove (∃x) from A.
2. replace x everywhere in A by f (x1, . . . , xn), where f is a new

function symbol.

Skolemisation does not preserve equivalence but preserves
satisfiability.

CNF Transformation

Take a first-order formula F .
1. transform it into NNF;
2. rectify it;
3. skolemise it;
4. remove all universal quantifiers;
5. transform to CNF the same way as propositional formulas.

CNF Transformation

Universal closure of a formula A is a formula

(∀x1) . . . (∀xn)A,

denoted by ∀A, where x1, . . . , xn are all free variables of A.

CNF transformation transforms a closed formula F into a set of
clauses C1, . . . , Cn such that F is satisfiable if and only if so is the set
of formulas ∀C1, . . . ,∀Cn.

CNF Transformation

Universal closure of a formula A is a formula

(∀x1) . . . (∀xn)A,

denoted by ∀A, where x1, . . . , xn are all free variables of A.

CNF transformation transforms a closed formula F into a set of
clauses C1, . . . , Cn such that F is satisfiable if and only if so is the set
of formulas ∀C1, . . . ,∀Cn.

	First-Order Logic
	Syntax and Semantics
	Clausal Forms

