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Computer Systems and Correctness

Suppose we design a (complex) computer system, which may
contain various components, for example, hardware, software etc.
We have high requirements to the correctness of the system (safety,
reliability, security, consistent state, no deadlocks etc.)
How can one achive a 100% safety?
Computer systems are becoming increasingly unreliable.



Small Example: Software

Consider the following fragment of a C++ program:

int sumOfFirstNIntegers(int n)
requires n >= 0
ensures result = n * (n+1) / 2

{
int sum = 0;
for (i = n;i != 0;i = i-1) { sum = sum+i; }
return sum;

}

We know that
1 + . . . + n =

n · (n + 1)

2

Is it true that for all integer n the program returns n·(n+1)
2 ?

We can write a Spec#-specification.
How can we prove automatically that the program is correct w.r.t. this
specification?
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Another example: circuit design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.
We want to be sure that C2 is correct, that is, it will behave according
to some specification.
If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.
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Automated Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))
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Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)

Conjecture: ∀x∀y(x · y = y · x)
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In the TPTP Syntax
TPTP library (Thousands of Problems for Theorem Provers),
www.tptp.org.

%---- 1 * x = 1
fof(left identity,axiom,

mult(e,X) = X.
%---- i(x) * x = 1
fof(left inverse,axiom,

mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

mult(X,Y) = mult(Y,X)).



Example: Proof by Vampire

.....



Theorem Provers

Theorem Prover: a system that can prove theorems automatically.
Two kinds of provers:

I automatic provers;
I interactive provers, or proof assistants.

Logics:

I in automatic provers mainly first-order logic (with built-in
equality);

I in interactive provers higher-order logics or type theories.

This course will be mainly about fully automatic theorem provers for
first-order logic.
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Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies),

Semantic Web;
I Theorem proving in mathematics, especially in algebra;
I Verification of cryptographic protocols;
I Circuit design;
I Constraint satisfaction;
I Planning;
I Databases (semantics and query optimisation);
I Solving exercises for this course ..

^



What We Expect of an Automatic Theorem Prover

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).
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