Outline

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and
- If A is a formula, then $\neg A$ is a formula.
- If A and B are formulas, then $(A \rightarrow B)$ and $(A \rightarrow B)$ are formulas.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.
- If A is a formula, then $\neg A$ is a formula.
- If A and B are formulas, then $(A \rightarrow B)$ and $(A \leftrightarrow B)$ are formulas.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.
- If A is a formula, then $\neg A$ is a formula.
- If A and B are formulas, then $(A \rightarrow B)$ and $(A \leftrightarrow B)$ are formulas.

The symbols $T, \perp, \wedge, \vee, \neg, \rightarrow, \leftrightarrow$ are called connectives.

Connectives

Connective	Name	Priority
\top	verum	
\perp	falsum	
\neg	negation	4
\wedge	conjunction	3
\vee	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use priorities to disambiguate them.

For example, in arithmetic we know that the expression is equivalent to
since \cdot has a higher priority than +
We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use priorities to disambiguate them.

For example, in arithmetic we know that the expression

$$
x \cdot y+2 \cdot z
$$

is equivalent to

$$
(x \cdot y)+(2 \cdot z)
$$

since has a higher priority than + .
We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use priorities to disambiguate them.

For example, in arithmetic we know that the expression

$$
x \cdot y+2 \cdot z
$$

is equivalent to

$$
(x \cdot y)+(2 \cdot z)
$$

since . has a higher priority than + .
We will also use priorities to disambiguate formulas.

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Connective	Priority
\top	
\perp	
\neg	4
\wedge	3
\vee	3
\rightarrow	2
\leftrightarrow	1

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Inside-out (starting with the highest priority connectives):

$$
(\neg A) \wedge B \rightarrow C \vee D) \leftrightarrow E .
$$

Connective	Priority
\top	
\perp	
\neg	4
\wedge	3
\vee	3
\rightarrow	2
\leftrightarrow	1

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Inside-out (starting with the highest priority connectives):

$$
((\neg A) \wedge B) \rightarrow(C \vee D) \leftrightarrow E .
$$

Connective	Priority
\top	
\perp	
\neg	4
\wedge	3
\vee	3
\rightarrow	2
\leftrightarrow	1

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Inside-out (starting with the highest priority connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Connective	Priority
\top	
\perp	
\neg	4
\wedge	3
\vee	3
\rightarrow	2
\leftrightarrow	1

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Connective	Priority
\top	
\perp	
\neg	3
\wedge	3
\vee	2
\rightarrow	1

Outside-in (starting with the lowest priority connectives):

$$
((\neg A \wedge B \rightarrow(C \vee D) \leftrightarrow E .
$$

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Connective	Priority
\top	
\perp	
\neg	3
\wedge	3
\vee	2
\rightarrow	1

Outside-in (starting with the lowest priority connectives):

$$
(((\neg A) \wedge B \rightarrow(C \vee D) \leftrightarrow E .
$$

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Connective	Priority
\top	
\perp	
\neg	3
\wedge	3
\vee	2
\rightarrow	1

Outside-in (starting with the lowest priority connectives):

$$
(((\neg A \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Connective	Priority
\top	
\perp	
\neg	3
\wedge	3
\vee	2
\rightarrow	1

Outside-in (starting with the lowest priority connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Parsing: Example

Let's parse $\neg A \wedge B \rightarrow C \vee D \leftrightarrow E$.

Inside-out (starting with the highest priority connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Outside-in (starting with the lowest priority connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.
Take a mapping from variables (integer) values, for example

Then, under this mapping the expression has the value 1. In other words, when we interpret variables as values, we can compute the value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.
Take a mapping from variables (integer) values, for example

$$
\{x \mapsto 1, y \mapsto 7, z \mapsto-3\}
$$

Then, under this mapping the expression has the value 1. In other words, when we interpret variables as values, we can compute the value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.
Take a mapping from variables (integer) values, for example

$$
\{x \mapsto 1, y \mapsto 7, z \mapsto-3\}
$$

Then, under this mapping the expression has the value 1. In other words, when we interpret variables as values, we can compute the value of the expression.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning boolean values to variables.

- A boolean value, also called a truth value, is either true (denoted
- An interpretation for a set P of boolean variables is a mapping

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning boolean values to variables.

- A boolean value, also called a truth value, is either true (denoted 1) or false (denoted 0).
- Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning boolean values to variables.

- A boolean value, also called a truth value, is either true (denoted 1) or false (denoted 0).
- An interpretation for a set P of boolean variables is a mapping $I: P \rightarrow\{1,0\}$.
- Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning boolean values to variables.

- A boolean value, also called a truth value, is either true (denoted 1) or false (denoted 0).
- An interpretation for a set P of boolean variables is a mapping $I: P \rightarrow\{1,0\}$.
- Interpretations are also called truth assignments.

Interpreting formulas

Extend / to all formulas:

1. $I(\top)=1$ and $I(\perp)=0$.
2. $I\left(A_{1} \wedge \ldots \wedge A_{n}\right)=1$ if and only if $I\left(A_{i}\right)=1$ for all i.
3. $I\left(A_{1} \vee \ldots \vee A_{n}\right)=1$ if and only if $I\left(A_{i}\right)=1$ for some i.
4. $I(\neg A)=1$ if and only if $I(A)=0$.
5. $I\left(A_{1} \rightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=0$ or $I\left(A_{2}\right)=1$.
6. $I\left(A_{1} \leftrightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=I\left(A_{2}\right)$.

Operation tables

$I\left(A_{1} \vee A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=1$ or $I\left(A_{2}\right)=1$.

\vee	1	0
1	1	1
0	1	0

Operation tables

$I\left(A_{1} \leftrightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=I\left(B_{2}\right)$.

Therefore, every connective can be considered as a function on truth values.

Operation tables

Therefore, every connective can be considered as a function on truth values.

Operation tables

$I\left(A_{1} \vee A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=1$ or $I\left(A_{2}\right)=1$.
$I\left(A_{1} \leftrightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=I\left(B_{2}\right)$.

Therefore, every connective can be considered as a function on truth values.

Satisfiability, validity

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that I is a model of A, denoted by $I \models A$.
- A is satisfiable (valid) if it is true in some (every) interpretation.

Satisfiability, validity

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that I is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.

Satisfiability, validity

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that l is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.
- A is satisfiable (valid) if it is true in some (every) interpretation.
they have the same models.

Satisfiability, validity

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that l is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.
- A is satisfiable (valid) if it is true in some (every) interpretation.
- Two formulas A and B are called equivalent, denoted by $A \equiv B$ if they have the same models.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable.
Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable.
Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable.
Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples: equivalences

For all formulas A and B, the following equivalences hold.

$$
\begin{align*}
A \rightarrow \perp & \equiv \neg A ; \tag{1}\\
\top \rightarrow A & \equiv A ; \tag{2}\\
A \rightarrow B & \equiv \neg(A \wedge \neg B) ; \tag{3}\\
A \wedge B & \equiv \neg(\neg A \vee \neg B) ; \tag{4}\\
A \vee B & \equiv \neg A \rightarrow B . \tag{5}
\end{align*}
$$

Connections between these notions

1. A formula A is valid if and only if $\neg A$ is unsatisfiable.
2. A formula A is satisfiable if and only if $\neg A$ is not valid.

Connections between these notions

1. A formula A is valid if and only if $\neg A$ is unsatisfiable.
2. A formula A is satisfiable if and only if $\neg A$ is not valid.
3. A formula A is valid if and only if A is equivalent to T.
4. Formulas A and B are equivalent if and only if the formula $A \leftrightarrow B$ is valid.

Equivalent replacement

We denote by $A[B]$ a formula A with a fixed occurrence of a subformula B. If we use this notation we can also write $A\left[B^{\prime}\right]$ to denote the formula obtained from A by replacing this occurrence of B by B^{\prime}.

Lemma (Equivalent Replacement) Let I be an interpretation and $I=A_{1} \leftrightarrow A_{2}$. Then $I \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$ Theorem (Enuivalent Renlacement) Let $A_{1} \equiv A_{2}$. Then Then $B\left[A_{1}\right] \equiv B\left[A_{2}\right]$

Equivalent replacement

We denote by $A[B]$ a formula A with a fixed occurrence of a subformula B. If we use this notation we can also write $A\left[B^{\prime}\right]$ to denote the formula obtained from A by replacing this occurrence of B by B^{\prime}.
Lemma (Equivalent Replacement)
Let I be an interpretation and $I \models A_{1} \leftrightarrow A_{2}$. Then $I \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$.

Equivalent replacement

We denote by $A[B]$ a formula A with a fixed occurrence of a subformula B. If we use this notation we can also write $A\left[B^{\prime}\right]$ to denote the formula obtained from A by replacing this occurrence of B by B^{\prime}.
Lemma (Equivalent Replacement)
Let I be an interpretation and $I \models A_{1} \leftrightarrow A_{2}$. Then $I \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$.
Theorem (Equivalent Replacement)
Let $A_{1} \equiv A_{2}$. Then Then $B\left[A_{1}\right] \equiv B\left[A_{2}\right]$.

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.
Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.
Desirable: if A is satisfiable, try to find a satisfying assignment for A, that is, a model of A.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

We have to establish that Eismann is not a Russian spy.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

We have to establish that Eismann is not a Russian spy.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

We have to establish that Eismann is not a Russian spy.
How can we solve problems of this kind?

Formalisation in propositional logic

Introduce propositional variables $X Y$ with the following meaning in mind:

$$
\begin{aligned}
& X \in\{R, G, S\} \text { (denoting Russian, German, Spy) } \\
& Y \in\{S, M, E\} \text { (denoting Stirlitz, Müller, Eismann) }
\end{aligned}
$$

For example,

Formalisation in propositional logic

Introduce propositional variables $X Y$ with the following meaning in mind:

$$
\begin{aligned}
& X \in\{R, G, S\} \text { (denoting Russian, German, Spy) } \\
& Y \in\{S, M, E\} \text { (denoting Stirlitz, Müller, Eismann) }
\end{aligned}
$$

For example,
SE: Eismann is a Spy
RS: Stirlitz is Russian

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

We have to establish that Eismann is not a Russian spy.

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)$.

Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

We have to establish that Eismann is not a Russian spy.

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)$.

Moreover, every Russian must be a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E) .
$$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

We have to establish that Eismann is not a Russian spy.

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)$.
Moreover, every Russian must be a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E)
$$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

$$
R S \leftrightarrow G M .
$$

We have to establish that Eismann is not a Russian spy.

Hidden: Russians are not Germans.

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)$.
Moreover, every Russian must be a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E)
$$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

$$
R S \leftrightarrow G M .
$$

We have to establish that Eismann is not a Russian spy.

$$
\neg(R E \wedge S E) .
$$

Hidden: Russians are not Germans.

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)$.
Moreover, every Russian must be a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E)
$$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

$$
R S \leftrightarrow G M .
$$

We have to establish that Eismann is not a Russian spy.

$$
\neg(R E \wedge S E) .
$$

Hidden: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E) .
$$

Why satisfiability?

A formula A is a logical consequence of formulas A_{1}, \ldots, A_{n}, or follows from A_{1}, \ldots, A_{n}, if every model of A_{1}, \ldots, A_{n} is also a model of A.

Note that A is not a logical consequence of A_{1}. the set of formulas $A_{1}, \ldots, A_{n}, \neg A$ is satisfiable.
We have to determine whether the fact that Eismann is not a Russian spy follows from the conditions of the puzzle.

Why satisfiability?

A formula A is a logical consequence of formulas A_{1}, \ldots, A_{n}, or follows from A_{1}, \ldots, A_{n}, if every model of A_{1}, \ldots, A_{n} is also a model of A.

Note that A is not a logical consequence of A_{1}, \ldots, A_{n} if and only if the set of formulas $A_{1}, \ldots, A_{n}, \neg A$ is satisfiable.

Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A_{1}, \ldots, A_{n}, or follows from A_{1}, \ldots, A_{n}, if every model of A_{1}, \ldots, A_{n} is also a model of A.

Note that A is not a logical consequence of A_{1}, \ldots, A_{n} if and only if the set of formulas $A_{1}, \ldots, A_{n}, \neg A$ is satisfiable.
We have to determine whether the fact that Eismann is not a Russian spy follows from the conditions of the puzzle.

Why satisfiability?

A formula A is a logical consequence of formulas A_{1}, \ldots, A_{n}, or follows from A_{1}, \ldots, A_{n}, if every model of A_{1}, \ldots, A_{n} is also a model of A.

Note that A is not a logical consequence of A_{1}, \ldots, A_{n} if and only if the set of formulas $A_{1}, \ldots, A_{n}, \neg A$ is satisfiable.
We have to determine whether the fact that Eismann is not a Russian spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the satisfaibility problem.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.
We know that equivalence-checking for propositional formulas can be reduced to unsatisfiability-checking.

Satisfiability?

Satisfiability checking is a combinatorial problem that is

- easy to formulate;
- hard to solve;
- NP-complete;
- has many algorithms (but only one is commonly used).

Literal, clause

- Literal: either an atom p (positive literal) or its negation $\neg p$ (negative literal).

Literal, clause

- Literal: either an atom p (positive literal) or its negation $\neg p$ (negative literal).
- The complementary literal to L :

$$
\bar{L} \stackrel{\text { def }}{\Leftrightarrow} \begin{cases}\neg L, & \text { if } L \text { is positive; } \\ p, & \text { if } L \text { has the form } \neg p .\end{cases}
$$

In other words, p and $\neg p$ are complementary.

Literal, clause

- Literal: either an atom p (positive literal) or its negation $\neg p$ (negative literal).
- The complementary literal to L :

$$
L \stackrel{\text { def }}{\Leftrightarrow} \begin{cases}\neg L, & \text { if } L \text { is positive; } \\ p, & \text { if } L \text { has the form } \neg p .\end{cases}
$$

In other words, p and $\neg p$ are complementary.

- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}, n \geq 0$ of literals.

Literal, clause

- Literal: either an atom p (positive literal) or its negation $\neg p$ (negative literal).
- The complementary literal to L :

$$
L \stackrel{\text { def }}{\Leftrightarrow} \begin{cases}\neg L, & \text { if } L \text { is positive; } \\ p, & \text { if } L \text { has the form } \neg p .\end{cases}
$$

In other words, p and $\neg p$ are complementary.

- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}, n \geq 0$ of literals.
- Empty clause, denoted by $\square: n=0$ (the empty clause is false in every interpretation).
- Unit clause: $n=1$.
- Horn clause: a clause with at most one positive literal.

CNF

- A formula A is in conjunctive normal form, or simply CNF, if it is either \top, or \perp, or a conjunction of disjunctions of literals:

$$
A=\bigwedge_{i} \bigvee_{j} L_{i, j}
$$

(That is, a conjunction of clauses.)

- A formula B is called a conjunctive normal form of a formula A if B is equivalent to A and B is in conjunctive normal form.

Satisfiability on CNF

- An interpretation / satisfies a formula in CNF

$$
A=\bigwedge_{i} \bigvee_{j} L_{i, j}
$$

if and only if it satisfies every clause

$$
\bigvee_{j} L_{i, j} .
$$

in it.

- An interpretation / satisfies a clause
if and only if it satisfies at least one literal L_{m} in this clause.

Satisfiability on CNF

- An interpretation / satisfies a formula in CNF

$$
A=\bigwedge_{i} \bigvee_{j} L_{i, j}
$$

if and only if it satisfies every clause

$$
\bigvee_{j} L_{i, j} .
$$

in it.

- An interpretation / satisfies a clause

$$
L_{1} \vee \ldots \vee L_{k}
$$

if and only if it satisfies at least one literal L_{m} in this clause.

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} & \Rightarrow\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \wedge \\
& \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable
contains no \leftrightarrow :

- contains no \rightarrow;

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow & \left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable

- contains no \leftrightarrow;
- contains no \rightarrow;
- may only contain \neg applied to atoms;

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow & \left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable

- contains no \leftrightarrow;
- contains no \rightarrow;
- may only contain \neg applied to atoms;
- cannot contain \wedge in the scope of \vee

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow & \left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable

- contains no \leftrightarrow;
- contains no \rightarrow;
- may only contain \neg applied to atoms;
- cannot contain \wedge in the scope of \vee
- (hence) is in CNF.

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow & \left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable

- contains no \leftrightarrow;
- contains no \rightarrow;
- may only contain \neg applied to atoms;
- cannot contain \wedge in the scope of \vee;
- (hence) is in CNF.

CNF transformation

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A, \\
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow & \left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \\
& \left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right) .
\end{aligned}
$$

A formula to which no rewrite rule is applicable

- contains no \leftrightarrow;
- contains no \rightarrow;
- may only contain \neg applied to atoms;
- cannot contain \wedge in the scope of \vee;
- (hence) is in CNF.

CNF, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg(p \wedge q) \vee r) \wedge p \wedge \neg r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \wedge
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg(p \wedge q) \vee r) \wedge p \wedge \neg r \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \wedge
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg(p \wedge q) \vee r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \wedge
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg(p \wedge q) \vee r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r
\end{aligned}
$$

$$
\begin{aligned}
A \leftrightarrow B & \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
A \rightarrow B & \Rightarrow \neg A \vee B, \\
\neg(A \wedge B) & \Rightarrow \neg A \vee \neg B, \\
\neg(A \vee B) & \Rightarrow \neg A \wedge \neg B, \\
\neg \neg A & \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right) \wedge
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
& \neg(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \vee(p \rightarrow r)) \Rightarrow \\
& \neg \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r)) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(p \rightarrow r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg(\neg p \vee r) \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge \neg \neg p \wedge r \Rightarrow \\
& (p \rightarrow q) \wedge(p \wedge q \rightarrow r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg(p \wedge q) \vee r) \wedge p \wedge \neg r \Rightarrow \\
& (p \rightarrow q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r \\
& (\neg p \vee q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r \\
& A \leftrightarrow B \Rightarrow(\neg A \vee B) \wedge(\neg B \vee A), \\
& \\
& \qquad A \rightarrow B \Rightarrow \neg A \vee B, \\
& \neg(A \wedge B) \Rightarrow \neg A \vee \neg B, \\
& \neg(A \vee B) \Rightarrow \neg A \wedge \neg B, \\
& \neg \neg \neg A \Rightarrow A,
\end{aligned}
$$

$$
\left(A_{1} \wedge \ldots \wedge A_{m}\right) \vee B_{1} \vee \ldots \vee B_{n} \quad \Rightarrow \quad\left(A_{1} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

$$
\left(A_{m} \vee B_{1} \vee \ldots \vee B_{n}\right)
$$

CNF and satisfiability

$$
\begin{gathered}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
(\neg p \vee q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r
\end{gathered}
$$

Therefore, the formula
has the same models as the set consisting of four clauses

The CNF transformation allows one to reduce the satisfiability problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

$$
\begin{gathered}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
\quad \cdots \\
\quad(\neg p \vee q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r
\end{gathered}
$$

Therefore, the formula

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

has the same models as the set consisting of four clauses

$$
\begin{aligned}
& \neg p \vee q \\
& \neg p \vee \neg q \vee r \\
& p \\
& \neg r
\end{aligned}
$$

The CNF transformation allows one to reduce the satisfiability problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

$$
\begin{gathered}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \Rightarrow \\
\quad \cdots \\
\quad(\neg p \vee q) \wedge(\neg p \vee \neg q \vee r) \wedge p \wedge \neg r
\end{gathered}
$$

Therefore, the formula

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

has the same models as the set consisting of four clauses

$$
\begin{aligned}
& \neg p \vee q \\
& \neg p \vee \neg q \vee r \\
& p \\
& \neg r
\end{aligned}
$$

The CNF transformation allows one to reduce the satisfiability problem for formulas to the satisfiability problem for sets of clauses.

Problem

Compute the CNF of

$$
p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) .
$$

Problem

Compute the CNF of

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) . \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)
\end{aligned}
$$

Problem

Compute the CNF of

$$
p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) .
$$

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \Rightarrow \\
& \left(\neg p_{1} \vee\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right) \wedge \\
& \left.\left(p_{1} \vee \neg\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) . \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \Rightarrow \\
& \left(\neg p_{1} \vee\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right) \wedge \\
& \left(p_{1} \vee \neg\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right) \Rightarrow \\
& \left(\neg p _ { 1 } \vee \left(\left(\neg p_{2} \vee\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \wedge\right.\right. \\
& \left.\left.\quad\left(p_{2} \vee \neg\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right)\right) \wedge \\
& \left(p_{1} \vee \neg\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right)
\end{aligned}
$$

If we continue, the formula will grow exponentially,

Problem

Compute the CNF of

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) . \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \Rightarrow \\
& \left(\neg p_{1} \vee\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \wedge\right. \\
& \left(p_{1} \vee \neg\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right) \Rightarrow \\
& \left(\neg p _ { 1 } \vee \left(\left(\neg p_{2} \vee\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right) \wedge\right.\right.\right. \\
& \left.\left.\left(p_{2} \vee \neg\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right)\right) \wedge \\
& \left(p_{1} \vee \neg\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)\right)
\end{aligned}
$$

If we continue, the formula will grow exponentially.

CNF is exponential

There are formulas for which the shortest CNF has exponential size.
Is there any way to avoid exponential blowup?

CNF is exponential

There are formulas for which the shortest CNF has exponential size.
Is there any way to avoid exponential blowup?

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.

$$
p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)
$$

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.

$$
p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right)
$$

- Replace the subformula by its name:

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.
- Add a formula stating that n is equivalent to A (definition for n).

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

- Replace the subformula by its name:

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.
- Add a formula stating that n is equivalent to A (definition for n).

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

- Replace the subformula by its name:

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow n\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The new set of two formulas has the same models as the original one But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.
- Add a formula stating that n is equivalent to A (definition for n).

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

- Replace the subformula by its name:

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow n\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The new set of two formulas has the same models as the original one if we restrict ourselves to the original set of variables $\left\{p_{1}, \ldots, p_{6}\right\}$.

Idea

Using so-called naming or definition introduction.

- Take a non-trivial subformula A.
- Introduce a new name n for it. A name is a new propositional variable.
- Add a formula stating that n is equivalent to A (definition for n).

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

- Replace the subformula by its name:

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow n\right)\right)\right) \\
& n \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The new set of two formulas has the same models as the original one if we restrict ourselves to the original set of variables $\left\{p_{1}, \ldots, p_{6}\right\}$.
But this set is not equivalent to the original formula.

After several steps

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right. \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow n_{3}\right) ; \\
& n_{3} \leftrightarrow\left(p_{3} \leftrightarrow n_{4}\right) ; \\
& n_{4} \leftrightarrow\left(p_{4} \leftrightarrow n_{5}\right) ; \\
& n_{5} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The conversion of the original formula to CNF introduces 32 copies of

The conversion of the new set of formulas to CNF introduces
of p_{6}.

After several steps

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right. \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow n_{3}\right) ; \\
& n_{3} \leftrightarrow\left(p_{3} \leftrightarrow n_{4}\right) ; \\
& n_{4} \leftrightarrow\left(p_{4} \leftrightarrow n_{5}\right) ; \\
& n_{5} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The conversion of the original formula to CNF introduces 32 copies of p_{6}.

The conversion of the
to CNF introduces

After several steps

$$
\begin{aligned}
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow\left(p_{3} \leftrightarrow\left(p_{4} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)\right)\right)\right. \\
& p_{1} \leftrightarrow\left(p_{2} \leftrightarrow n_{3}\right) ; \\
& n_{3} \leftrightarrow\left(p_{3} \leftrightarrow n_{4}\right) ; \\
& n_{4} \leftrightarrow\left(p_{4} \leftrightarrow n_{5}\right) ; \\
& n_{5} \leftrightarrow\left(p_{5} \leftrightarrow p_{6}\right)
\end{aligned}
$$

The conversion of the original formula to CNF introduces 32 copies of p_{6}.

The conversion of the new set of formulas to CNF introduces 4 copies of p_{6}.

Clausal Form

- Clausal form of a formula A: a set of clauses which is satisfiable if and only if A is satisfiable.
satisfiable if and only if so is S.
Ne can reauire even more: that A and S have the same models in the language of A.

Clausal Form

- Clausal form of a formula A: a set of clauses which is satisfiable if and only if A is satisfiable.
- Clausal form of a set S of formulas: a set of clauses which is satisfiable if and only if so is S.
We can require even more: that A and S have the same models in the language of A.

Usina clausal normal forms instead of conjunctive normal forms we can convert any formula to a set of clauses in almost linear time.

Clausal Form

- Clausal form of a formula A: a set of clauses which is satisfiable if and only if A is satisfiable.
- Clausal form of a set S of formulas: a set of clauses which is satisfiable if and only if so is S.
We can require even more: that A and S have the same models in the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

- Clausal form of a formula A: a set of clauses which is satisfiable if and only if A is satisfiable.
- Clausal form of a set S of formulas: a set of clauses which is satisfiable if and only if so is S.
We can require even more: that A and S have the same models in the language of A.

Using clausal normal forms instead of conjunctive normal forms we can convert any formula to a set of clauses in almost linear time.

Definitional Clause Form Transformation

This algorithm converts a formula A into a set of clauses S such that S is a clausal normal form of A.
If A has the form $C_{1} \wedge \ldots \wedge C_{n}$, where $n \geq 1$ and each C_{i} is a clause, then $S \stackrel{\text { def }}{\Leftrightarrow}\left\{C_{1}, \ldots, C_{n}\right\}$.
Otherwise, introduce a name for each subformula B of A such that B is not a literal and use this name instead of the formula.

Example

	subformula	definition	clauses
			n_{1}
n_{1}	$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	$n_{1} \leftrightarrow \neg n_{2}$	$\begin{array}{rr} \neg n_{1} \vee \neg n_{2} \\ n_{1} \vee & n_{2} \end{array}$
n_{2}	$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	$n_{2} \leftrightarrow\left(n_{3} \rightarrow n_{7}\right)$	$\begin{gathered} \neg n_{2} \vee \neg n_{3} \vee n_{7} \\ n_{3} \vee n_{2} \\ \neg n_{7} \vee \\ n_{2} \end{gathered}$
n_{3}	$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	$n_{3} \leftrightarrow\left(n_{4} \wedge n_{5}\right)$	$\begin{aligned} & \neg n_{3} \vee n_{4} \\ & \neg n_{3} \vee \quad n_{5} \\ & \neg n_{4} \vee \neg n_{5} \vee n_{3} \end{aligned}$
n_{4}	$p \rightarrow q$	$n_{4} \leftrightarrow(p \rightarrow q)$	$\begin{gathered} \neg n_{4} \vee \neg p \vee q \\ p \vee \\ \neg q \vee n_{4} \\ \neg q \vee \end{gathered}$
n_{5}	$p \wedge q \rightarrow r$	$n_{5} \leftrightarrow\left(n_{6} \rightarrow r\right)$	$\begin{gathered} \neg n_{5} \vee \neg n_{6} \vee r \\ n_{6} \vee n_{5} \\ \neg r \vee \\ \neg r \end{gathered}$
n_{6}	$p \wedge q$	$n_{6} \leftrightarrow(p \wedge q)$	$\begin{aligned} & \neg n_{6} \vee \quad p \\ & \neg n_{6} \vee q \\ & \neg p \vee \neg q \vee n_{6} \end{aligned}$
n_{7}	$p \rightarrow r$	$n_{7} \leftrightarrow(p \rightarrow r)$	$\begin{aligned} & \neg n_{7} \vee \neg p \vee r \\ & p \vee n_{7} \\ & \neg r \vee n_{7} \end{aligned}$

