
Outline

Propositional Logic
Syntax
Semantics
Propositional Satisfiability
Clausal Forms
Clausal Form and Definitional Transformation

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.

Connectives

Connective Name Priority
> verum
⊥ falsum
¬ negation 4
∧ conjunction 3
∨ disjunction 3
→ implication 2
↔ equivalence 1

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1, 0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1, 0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1, 0}.

I Interpretations are also called truth assignments.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1, 0}.

I Interpretations are also called truth assignments.

Interpreting formulas

Extend I to all formulas:

1. I(>) = 1 and I(⊥) = 0.
2. I(A1 ∧ . . . ∧ An) = 1 if and only if I(Ai) = 1 for all i .
3. I(A1 ∨ . . . ∨ An) = 1 if and only if I(Ai) = 1 for some i .
4. I(¬A) = 1 if and only if I(A) = 0.
5. I(A1 → A2) = 1 if and only if I(A1) = 0 or I(A2) = 1.
6. I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples: equivalences

For all formulas A and B, the following equivalences hold.

A→ ⊥ ≡ ¬A; (1)
> → A ≡ A; (2)
A→ B ≡ ¬(A ∧ ¬B); (3)
A ∧ B ≡ ¬(¬A ∨ ¬B); (4)
A ∨ B ≡ ¬A→ B. (5)

Connections between these notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.
3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

Connections between these notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.
3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.

Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.

Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.

Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?

Formalisation in propositional logic

Introduce propositional variables XY with the following meaning in
mind:

X ∈ {R, G, S} (denoting Russian, German, Spy)
Y ∈ {S, M, E} (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian

Formalisation in propositional logic

Introduce propositional variables XY with the following meaning in
mind:

X ∈ {R, G, S} (denoting Russian, German, Spy)
Y ∈ {S, M, E} (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . , An, or
follows from A1, . . . , An, if every model of A1, . . . , An is also a model of
A.
Note that A is not a logical consequence of A1, . . . , An if and only if
the set of formulas A1, . . . , An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . , An, or
follows from A1, . . . , An, if every model of A1, . . . , An is also a model of
A.
Note that A is not a logical consequence of A1, . . . , An if and only if
the set of formulas A1, . . . , An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . , An, or
follows from A1, . . . , An, if every model of A1, . . . , An is also a model of
A.
Note that A is not a logical consequence of A1, . . . , An if and only if
the set of formulas A1, . . . , An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . , An, or
follows from A1, . . . , An, if every model of A1, . . . , An is also a model of
A.
Note that A is not a logical consequence of A1, . . . , An if and only if
the set of formulas A1, . . . , An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.

Satisfiability?

Satisfiability checking is a combinatorial problem that is

I easy to formulate;
I hard to solve;
I NP-complete;
I has many algorithms (but only one is commonly used).

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.

CNF

I A formula A is in conjunctive normal form, or simply CNF, if it is
either >, or ⊥, or a conjunction of disjunctions of literals:

A =
∧

i

∨
j

Li,j .

(That is, a conjunction of clauses.)
I A formula B is called a conjunctive normal form of a formula A if

B is equivalent to A and B is in conjunctive normal form.

Satisfiability on CNF

I An interpretation I satisfies a formula in CNF

A =
∧

i

∨
j

Li,j .

if and only if it satisfies every clause∨
j

Li,j .

in it.
I An interpretation I satisfies a clause

L1 ∨ . . . ∨ Lk

if and only if it satisfies at least one literal Lm in this clause.

Satisfiability on CNF

I An interpretation I satisfies a formula in CNF

A =
∧

i

∨
j

Li,j .

if and only if it satisfies every clause∨
j

Li,j .

in it.
I An interpretation I satisfies a clause

L1 ∨ . . . ∨ Lk

if and only if it satisfies at least one literal Lm in this clause.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,
¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF, example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
¬(¬((p → q) ∧ (p ∧ q → r)) ∨ (p → r))⇒
¬¬((p → q) ∧ (p ∧ q → r)) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(p → r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬(¬p ∨ r)⇒
(p → q) ∧ (p ∧ q → r) ∧ ¬¬p ∧ r ⇒
(p → q) ∧ (p ∧ q → r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬(p ∧ q) ∨ r) ∧ p ∧ ¬r ⇒
(p → q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r
(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.

CNF is exponential

There are formulas for which the shortest CNF has exponential size.

Is there any way to avoid exponential blowup?

CNF is exponential

There are formulas for which the shortest CNF has exponential size.

Is there any way to avoid exponential blowup?

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.

Definitional Clause Form Transformation

This algorithm converts a formula A into a set of clauses S such that
S is a clausal normal form of A.
If A has the form C1 ∧ . . . ∧ Cn, where n ≥ 1 and each Ci is a clause,
then S def⇔ {C1, . . . , Cn}.
Otherwise, introduce a name for each subformula B of A such that B
is not a literal and use this name instead of the formula.

Example
subformula definition clauses

n1

n1 ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) n1 ↔ ¬n2 ¬n1 ∨ ¬n2

n1 ∨ n2

n2 (p → q) ∧ (p ∧ q → r)→ (p → r) n2 ↔ (n3 → n7) ¬n2 ∨ ¬n3 ∨ n7

n3 ∨ n2

¬n7 ∨ n2

n3 (p → q) ∧ (p ∧ q → r) n3 ↔ (n4 ∧ n5) ¬n3 ∨ n4

¬n3 ∨ n5

¬n4 ∨ ¬n5 ∨ n3

n4 p → q n4 ↔ (p → q) ¬n4 ∨ ¬p ∨ q
p ∨ n4

¬q ∨ n4

n5 p ∧ q → r n5 ↔ (n6 → r) ¬n5 ∨ ¬n6 ∨ r
n6 ∨ n5

¬r ∨ n5

n6 p ∧ q n6 ↔ (p ∧ q) ¬n6 ∨ p
¬n6 ∨ q
¬p ∨ ¬q ∨ n6

n7 p → r n7 ↔ (p → r) ¬n7 ∨ ¬p ∨ r
p ∨ n7

¬r ∨ n7

	Propositional Logic
	Syntax
	Semantics
	Propositional Satisfiability
	Clausal Forms
	Clausal Form and Definitional Transformation

