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Propositional logic: syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . , An are formulas, where n ≥ 2, then (A1∧ . . .∧An) and

(A1∨ . . .∨An) are formulas.
I If A is a formula, then ¬A is a formula.
I If A and B are formulas, then (A→B) and (A↔B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.
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Connectives

Connective Name Priority
> verum
⊥ falsum
¬ negation 4
∧ conjunction 3
∨ disjunction 3
→ implication 2
↔ equivalence 1



Parsing Formulas

We normally omit parenthesis in mathematical expressions and use
priorities to disambiguate them.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher priority than +.

We will also use priorities to disambiguate formulas.
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Parsing: Example

Let’s parse ¬A ∧ B → C ∨ D ↔ E .

Inside-out (starting with the highest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest priority
connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Connective Priority
>
⊥
¬ 4
∧ 3
∨ 3
→ 2
↔ 1
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Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of the expression.
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Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning boolean values to variables.

I A boolean value, also called a truth value, is either true (denoted
1) or false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1, 0}.

I Interpretations are also called truth assignments.
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Interpreting formulas

Extend I to all formulas:

1. I(>) = 1 and I(⊥) = 0.
2. I(A1 ∧ . . . ∧ An) = 1 if and only if I(Ai) = 1 for all i .
3. I(A1 ∨ . . . ∨ An) = 1 if and only if I(Ai) = 1 for some i .
4. I(¬A) = 1 if and only if I(A) = 0.
5. I(A1 → A2) = 1 if and only if I(A1) = 0 or I(A2) = 1.
6. I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).



Operation tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(B2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.
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Satisfiability, validity

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable (valid) if it is true in some (every) interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.
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Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable.

Formula p, where p is a boolean variable, is satisfiable but not valid.
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Examples: equivalences

For all formulas A and B, the following equivalences hold.

A→ ⊥ ≡ ¬A; (1)
> → A ≡ A; (2)
A→ B ≡ ¬(A ∧ ¬B); (3)
A ∧ B ≡ ¬(¬A ∨ ¬B); (4)
A ∨ B ≡ ¬A→ B. (5)



Connections between these notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.
3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.
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Equivalent replacement

We denote by A[B] a formula A with a fixed occurrence of a
subformula B. If we use this notation we can also write A[B′] to
denote the formula obtained from A by replacing this occurrence of B
by B′.

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then Then B[A1] ≡ B[A2].
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Propositional Satisfiability Problem

Given a propositional formula A, check wheter it is satisfiable or not.

Desirable: if A is satisfiable, try to find a satisfying assignment for A,
that is, a model of A.
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Russian spy puzzle

There are three persons: Stirlitz, Müller, and
Eismann. It is known that exactly one of them is
Russian, while the other two are Germans.
Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he
makes the following joke: “you know, Müller,
you are as German as I am Russian”. It is
known that Stirlitz always tells the truth when
he is joking.

We have to establish that Eismann is not a Russian spy.

How can we solve problems of this kind?
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Formalisation in propositional logic

Introduce propositional variables XY with the following meaning in
mind:

X ∈ {R, G, S} (denoting Russian, German, Spy)
Y ∈ {S, M, E} (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian
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Formalisation in propositional logic

There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.
(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

We have to establish that Eismann is not a Russian spy.
¬(RE ∧ SE).

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).
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Why satisfiability?

A formula A is a logical consequence of formulas A1, . . . , An, or
follows from A1, . . . , An, if every model of A1, . . . , An is also a model of
A.
Note that A is not a logical consequence of A1, . . . , An if and only if
the set of formulas A1, . . . , An,¬A is satisfiable.
We have to determine whether the fact that Eismann is not a Russian
spy follows from the conditions of the puzzle.
Therefore, the problem of solving the puzzle is an instance of the
satisfaibility problem.
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Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.
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Satisfiability?

Satisfiability checking is a combinatorial problem that is

I easy to formulate;
I hard to solve;
I NP-complete;
I has many algorithms (but only one is commonly used).



Literal, clause

I Literal: either an atom p (positive literal) or its negation ¬p
(negative literal).

I The complementary literal to L:

L def⇔
{
¬L, if L is positive;
p, if L has the form ¬p.

In other words, p and ¬p are complementary.
I Clause: a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 of literals.

I Empty clause, denoted by �: n = 0 (the empty clause is false in
every interpretation).

I Unit clause: n = 1.
I Horn clause: a clause with at most one positive literal.
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CNF

I A formula A is in conjunctive normal form, or simply CNF, if it is
either >, or ⊥, or a conjunction of disjunctions of literals:

A =
∧

i

∨
j

Li,j .

(That is, a conjunction of clauses.)
I A formula B is called a conjunctive normal form of a formula A if

B is equivalent to A and B is in conjunctive normal form.



Satisfiability on CNF

I An interpretation I satisfies a formula in CNF

A =
∧

i

∨
j

Li,j .

if and only if it satisfies every clause∨
j

Li,j .

in it.
I An interpretation I satisfies a clause

L1 ∨ . . . ∨ Lk

if and only if it satisfies at least one literal Lm in this clause.
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CNF transformation

A↔ B ⇒ (¬A ∨ B) ∧ (¬B ∨ A),
A→ B ⇒ ¬A ∨ B,

¬(A ∧ B) ⇒ ¬A ∨ ¬B,
¬(A ∨ B) ⇒ ¬A ∧ ¬B,
¬¬A ⇒ A,

(A1 ∧ . . . ∧ Am) ∨ B1 ∨ . . . ∨ Bn ⇒ (A1 ∨ B1 ∨ . . . ∨ Bn) ∧
· · · ∧

(Am ∨ B1 ∨ . . . ∨ Bn).

A formula to which no rewrite rule is applicable

I contains no↔;
I contains no→;
I may only contain ¬ applied to atoms;
I cannot contain ∧ in the scope of ∨;
I (hence) is in CNF.
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CNF and satisfiability

¬((p → q) ∧ (p ∧ q → r)→ (p → r))⇒
· · ·

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Therefore, the formula

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

has the same models as the set consisting of four clauses

¬p ∨ q
¬p ∨ ¬q ∨ r
p
¬r

The CNF transformation allows one to reduce the satisfiability
problem for formulas to the satisfiability problem for sets of clauses.
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Problem

Compute the CNF of

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))⇒
(¬p1 ∨ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))) ∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))⇒
(¬p1 ∨ ((¬p2 ∨ (p3 ↔ (p4 ↔ (p5 ↔ p6))))∧

(p2 ∨ ¬(p3 ↔ (p4 ↔ (p5 ↔ p6))))))∧
(p1 ∨ ¬(p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))))

If we continue, the formula will grow exponentially.
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There are formulas for which the shortest CNF has exponential size.

Is there any way to avoid exponential blowup?
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Idea

Using so-called naming or definition introduction.

I Take a non-trivial subformula A.
I Introduce a new name n for it. A name is a new propositional

variable.
I Add a formula stating that n is equivalent to A (definition for n).

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6))))
n↔ (p5 ↔ p6)

I Replace the subformula by its name:

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ n)))
n↔ (p5 ↔ p6)

The new set of two formulas has the same models as the original one
if we restrict ourselves to the original set of variables {p1, . . . , p6}.
But this set is not equivalent to the original formula.
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After several steps

p1 ↔ (p2 ↔ (p3 ↔ (p4 ↔ (p5 ↔ p6)))

p1 ↔ (p2 ↔ n3);
n3 ↔ (p3 ↔ n4);
n4 ↔ (p4 ↔ n5);
n5 ↔ (p5 ↔ p6).

The conversion of the original formula to CNF introduces 32 copies of
p6.

The conversion of the new set of formulas to CNF introduces 4 copies
of p6.
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Clausal Form

I Clausal form of a formula A: a set of clauses which is satisfiable
if and only if A is satisfiable.

I Clausal form of a set S of formulas: a set of clauses which is
satisfiable if and only if so is S.

We can require even more: that A and S have the same models in
the language of A.

Using clausal normal forms instead of conjunctive normal forms we
can convert any formula to a set of clauses in almost linear time.
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Definitional Clause Form Transformation

This algorithm converts a formula A into a set of clauses S such that
S is a clausal normal form of A.
If A has the form C1 ∧ . . . ∧ Cn, where n ≥ 1 and each Ci is a clause,
then S def⇔ {C1, . . . , Cn}.
Otherwise, introduce a name for each subformula B of A such that B
is not a literal and use this name instead of the formula.



Example
subformula definition clauses

n1

n1 ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) n1 ↔ ¬n2 ¬n1 ∨ ¬n2

n1 ∨ n2

n2 (p → q) ∧ (p ∧ q → r)→ (p → r) n2 ↔ (n3 → n7) ¬n2 ∨ ¬n3 ∨ n7

n3 ∨ n2

¬n7 ∨ n2

n3 (p → q) ∧ (p ∧ q → r) n3 ↔ (n4 ∧ n5) ¬n3 ∨ n4

¬n3 ∨ n5

¬n4 ∨ ¬n5 ∨ n3

n4 p → q n4 ↔ (p → q) ¬n4 ∨ ¬p ∨ q
p ∨ n4

¬q ∨ n4

n5 p ∧ q → r n5 ↔ (n6 → r) ¬n5 ∨ ¬n6 ∨ r
n6 ∨ n5

¬r ∨ n5

n6 p ∧ q n6 ↔ (p ∧ q) ¬n6 ∨ p
¬n6 ∨ q
¬p ∨ ¬q ∨ n6

n7 p → r n7 ↔ (p → r) ¬n7 ∨ ¬p ∨ r
p ∨ n7

¬r ∨ n7
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