Outline

Resolution
Inference Systems
Soundness and Completeness Literal Selection and Orderings Inference Processes Redundancy Elimination

Binary Resolution Inference System

The binary resolution inference system, denoted by $\mathbb{B R}$, consists of two inference rules:

- Binary resolution, denoted by BR
- Factoring, denoted by Fact:

Binary Resolution Inference System

The binary resolution inference system, denoted by $\mathbb{B} \mathbb{R}$, consists of two inference rules:

- Binary resolution, denoted by BR

$$
\frac{p \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

Binary Resolution Inference System

The binary resolution inference system, denoted by $\mathbb{B} \mathbb{R}$, consists of two inference rules:

- Binary resolution, denoted by BR

$$
\frac{p \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

$$
\frac{L \vee L \vee C}{L \vee C} \text { (Fact). }
$$

Inference System

- inference has the form

where $n \geq 0$ and F_{1}, \ldots, F_{n}, G are formulas.
- The formula G is called the conclusion of the inference;
- The formulas F_{1}, \ldots, F_{n} are called its premises.
- An inference rule R is a set of inferences.
- Every inference $I \in R$ is called an instance of R.
- An Inference system II is a set of inference rules.

Inference System

- inference has the form

where $n \geq 0$ and F_{1}, \ldots, F_{n}, G are formulas.
- The formula G is called the conclusion of the inference;
- The formulas F_{1}, \ldots, F_{n} are called its premises.
- An inference rule R is a set of inferences.
- Every inference $I \in R$ is called an instance of R.
- An Inference system II is a set of inference rules.
- Axiom: inference rule with no premises.

Inference System

- inference has the form

where $n \geq 0$ and F_{1}, \ldots, F_{n}, G are formulas.
- The formula G is called the conclusion of the inference;
- The formulas F_{1}, \ldots, F_{n} are called its premises.
- An inference rule R is a set of inferences.
- Every inference $I \in R$ is called an instance of R.
- An Inference system \mathbb{I} is a set of inference rules.
- Axiom: inference rule with no premises.

Inference System

- inference has the form

where $n \geq 0$ and F_{1}, \ldots, F_{n}, G are formulas.
- The formula G is called the conclusion of the inference;
- The formulas F_{1}, \ldots, F_{n} are called its premises.
- An inference rule R is a set of inferences.
- Every inference $I \in R$ is called an instance of R.
- An Inference system \mathbb{I} is a set of inference rules.
- Axiom: inference rule with no premises.

Derivation, Proof

- Derivation in an inference system \mathbb{I} : a tree built from inferences in \mathbb{I}.
- If the root of this derivation is E, then we say it is a derivation of E.
- Proof of E : a finite derivation whose leaves are axioms.
- Derivation of E from E_{1}, \ldots, E_{m} : a finite derivation of E whose every leaf is either an axiom or one of the expressions E_{1}, \ldots, E_{m}.

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference rule is sound if every inference of this rule is sound.
- An inference system is sound if every inference rule in this system is sound.

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference rule is sound if every inference of this rule is sound.
- An inference system is sound if every inference rule in this system is sound.

Theorem
$\mathbb{B} \mathbb{R}$ is sound.

Consequence of Soundness

Theorem
Let S be a set of clauses. If \square can be derived from S in $\mathbb{B} \mathbb{R}$, then S is unsatisfiable.

Example

Consider the following set of clauses

$$
\{\neg p \vee \neg q, \neg p \vee q, p \vee \neg q, p \vee q\}
$$

The following derivation derives the empty clause from this set:

Hence, this set of clauses is unsatisfiable.

Example

Consider the following set of clauses

$$
\{\neg p \vee \neg q, \neg p \vee q, p \vee \neg q, p \vee q\}
$$

The following derivation derives the empty clause from this set:

$$
\frac{p \vee q p \vee \neg q}{\left.\frac{p \vee p}{\frac{p}{c}(\mathrm{Fact})} \mathrm{BR}\right)} \frac{\neg p \vee q \neg p \vee \neg q}{\frac{\neg p \vee \neg p}{\neg p}(\mathrm{BR})} \text { (Fact) }
$$

Hence, this set of clauses is unsatisfiable.

Example

Consider the following set of clauses

$$
\{\neg p \vee \neg q, \neg p \vee q, p \vee \neg q, p \vee q\}
$$

The following derivation derives the empty clause from this set:

$$
\frac{p \vee q \quad p \vee \neg q}{\left.\frac{p \vee p}{\frac{p}{c}(\mathrm{Fact})} \mathrm{BR}\right)} \frac{\neg p \vee q \neg p \vee \neg q}{\frac{\neg p \vee \neg p}{\neg p}(\mathrm{BR})} \text { (Fact) }
$$

Hence, this set of clauses is unsatisfiable.

Writing derivations in the linear form

(1) $\neg p \vee \neg q$ input
(2) $\neg p \vee q$ input
(3) $p \vee \neg q$ input
(4) $p \vee q \quad$ input
(5) $\neg p \vee \neg p \quad$ BR $\quad(1,2)$
(6) $\neg p$ Fact (5)
(7) $p \vee p \quad$ BR $(3,4)$
(8) p Fact (7)
(9) $\square \quad \mathrm{BR} \quad(6,8)$

Completeness

$\mathbb{B R}$ is complete, that is, if a set of clauses is unsatisfiable, then one can derive an empty clause from this set.

Selection Function

The binary resolution inference system has too many inferences. There are restrictions on resolution that allow for fewer inferences but preserve completeness.

To define these systems we need a new notion. A literal selection function selects one or more literals in every non-empty clause.

Selection Function

The binary resolution inference system has too many inferences. There are restrictions on resolution that allow for fewer inferences but preserve completeness.

To define these systems we need a new notion.
A literal selection function selects one or more literals in every
non-empty clause.
We will someitimes denote selected literals by underlining them, e.g.,

Selection Function

The binary resolution inference system has too many inferences. There are restrictions on resolution that allow for fewer inferences but preserve completeness.

To define these systems we need a new notion.
A literal selection function selects one or more literals in every non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

Selection Function

The binary resolution inference system has too many inferences. There are restrictions on resolution that allow for fewer inferences but preserve completeness.

To define these systems we need a new notion.
A literal selection function selects one or more literals in every non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

$$
\underline{p} \vee \neg q
$$

Binary Resolution with Selection

The binary resolution inference system, denoted by $\mathbb{B}_{\mathbb{R}_{\sigma}}$, consists of two inference rules:

- Binary resolution denoted by BR

$$
\frac{\underline{p} \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

$$
\frac{L \vee L \vee C}{L \vee C} \text { (Fact). }
$$

Binary resolution with selection is incomplete.
However, it is complete for some well-behaved selection functions.

Binary Resolution with Selection

The binary resolution inference system, denoted by $\mathbb{B}_{\mathbb{R}_{\sigma}}$, consists of two inference rules:

- Binary resolution denoted by BR

$$
\frac{\underline{p} \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

$$
\frac{L \vee L \vee C}{L \vee C} \text { (Fact). }
$$

Binary resolution with selection is incomplete.
However, it is complete for some well-behaved selection functions.

Binary Resolution with Selection

The binary resolution inference system, denoted by $\mathbb{B}_{\mathbb{R}_{\sigma}}$, consists of two inference rules:

- Binary resolution denoted by BR

$$
\frac{p \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

$$
\frac{L \vee L \vee C}{L \vee C} \text { (Fact). }
$$

Binary resolution with selection is incomplete. However, it is complete for some well-behaved selection functions.

Unrestricted binary resolution and binary resolution with selection

Consider the selection function that selects all literals in a clause. Then the binary resolution rule:

$$
\frac{p \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

becomes a special case of binary resolution with selection.

Literal Orderings

Consider any total ordering \succ on propositional variables. We want to extend it to literals.

Let $L_{1}=(\neg) A_{1}$ and $L_{2}=(\neg) A_{2}$ be literals. We let $L_{1} \succ$ lit L_{2} if and only
if one of the following conditions holds:

In other words, we compare literals by first comparing the atoms of these literals and if the atoms are equal define the negative literal to be greater.

Literal Orderings

Consider any total ordering \succ on propositional variables. We want to extend it to literals.

Let $L_{1}=(\neg) A_{1}$ and $L_{2}=(\neg) A_{2}$ be literals. We let $L_{1} \succ_{\text {lit }} L_{2}$ if and only if one of the following conditions holds:

1. $A_{1} \succ A_{2}$; or
2. $A_{1}=A_{2}, L_{1}$ is negative and L_{2} is positive.
[^0]
Literal Orderings

Consider any total ordering \succ on propositional variables. We want to extend it to literals.

Let $L_{1}=(\neg) A_{1}$ and $L_{2}=(\neg) A_{2}$ be literals. We let $L_{1} \succ_{\text {lit }} L_{2}$ if and only if one of the following conditions holds:

1. $A_{1} \succ A_{2}$; or
2. $A_{1}=A_{2}, L_{1}$ is negative and L_{2} is positive.

In other words, we compare literals by first comparing the atoms of these literals and if the atoms are equal define the negative literal to be greater.

Ordered resolution

Fix an ordering \succ on the set of propositional variables and let $\succ_{\text {lit }}$ be corresponding literal ordering. Consider the selection function σ that selects all maximal w.r.t. $\succ_{\text {lit }}$ literals.

Ordered resolution

Fix an ordering \succ on the set of propositional variables and let $\succ_{\text {lit }}$ be corresponding literal ordering. Consider the selection function σ that selects all maximal w.r.t. $\succ_{\text {lit }}$ literals.

Theorem

$\mathbb{B R}_{\sigma}$ is complete, that is, for every unsatisfiable set of clauses S one can derive the empty clause from clauses in S using inferences in $\mathbb{B R}_{\sigma}$.

Ordered resolution: example

Assume $q \succ p$.

(1)	$\neg p \vee \neg q$	input	
(2)	$\neg p \vee \bar{q}$	input	
(3)	$p \vee \neg \frac{q}{q}$	input	
(4)	$p \vee \underline{q}$	input	
(5)	$\neg p \vee \neg p$	BR	$(1,2)$
(6)	$\frac{p}{p} \vee \underline{p}$	BR	$(3,4)$
(7)	$\frac{p}{p}$	Fact	(6)
(8)	$\neg p$	BR	$(6,7)$
(9)	\square	BR	$(6,8)$

Note: fewer inferences are enabled compared to unrestricted binary resolution.

Ordered resolution: example

Assume $q \succ p$.

(1)	$\neg p \vee \neg q$	input	
(2)	$\neg p \vee \frac{q}{q}$	input	
(3)	$p \vee \neg \frac{q}{q}$	input	
(4)	$p \vee q$	input	
(5)	$\neg p \vee \neg p$	BR	$(1,2)$
(6)	$\underline{p} \vee p$	BR	$(3,4)$
(7)	\bar{p}	Fact	(6)
(8)	$\neg p$	BR	$(6,7)$
(9)	$\frac{\square}{\square}$	BR	$(6,8)$

Note: fewer inferences are enabled compared to unrestricted binary resolution.

Inference Process

Inference process: sequence of sets of clauses S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.
We say that this step is an I-step if
there exists an inference

An II-inference process is an inference process whose every step is
an II-step.

Inference Process

Inference process: sequence of sets of clauses S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.
We say that this step is an \mathbb{I}-step if

1. there exists an inference

$$
\frac{C_{1} \ldots C_{n}}{C}
$$

in \mathbb{I} such that $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{i}$;
2. $S_{i+1}=S_{i} \cup\{C\}$.

An \mathbb{I}-inference process is an inference process whose every step is an I-step.

Inference Process

Inference process: sequence of sets of clauses S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.
We say that this step is an \mathbb{I}-step if

1. there exists an inference

in \mathbb{I} such that $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{i}$;
2. $S_{i+1}=S_{i} \cup\{C\}$.

An \mathbb{I}-inference process is an inference process whose every step is an \mathbb{I}-step.

Property

Lemma
Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be an \mathbb{I}-inference process and a clause C belongs to some S_{i}. Then S_{i} is derivable in \mathbb{I} from S_{0}.

Property

Lemma
Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be an \mathbb{I}-inference process and a clause C belongs to some S_{i}. Then S_{i} is derivable in \mathbb{I} from S_{0}.

Can we prove the inverse?

Limit and Fairness

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of clauses $\bigcup_{i} S_{i}$.

Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow$
be an inference process with the limit S_{∞} The process is called fair if for every \mathbb{L}-inference

Limit and Fairness

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of clauses $\bigcup_{i} S_{i}$.

Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be an inference process with the limit S_{∞}. The process is called fair if for every \mathbb{I}-inference

if $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{\infty}$, then there exists i such that $C \in S_{i}$.

Completeness, reformulated

Theorem Let \mathbb{I} be an inference system. The following conditions are equivalent.

1. II is complete.
2. For every unsatisfiable set of clauses S_{0} and any fair \mathbb{I}-inference process with the initial set S_{0}, the limit of this inference process contains \square.

Saturated Set of Clauses

Let \mathbb{I} be an inference system and S be a set of clauses. S is called saturated with respect to \mathbb{I}, or simply \mathbb{I}-saturated, if for every inference of \mathbb{I} with premises in S, the conclusion of this inference also belongs to S.

The closure of S with respect to \mathbb{I}, or simply \mathbb{I}-closure, is the smallest set S^{\prime} containing S and saturated with respect to \mathbb{I}.

Completeness of Ordered Resolution

Theorem (Completeness)
Take any well-founded ordering \succ and consider the selection function σ that selects all maximal w.r.t. $\succ_{\text {lit }}$ literals. Let S_{0} be a set of clauses and $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be a fair $\mathbb{B} \mathbb{R}_{\sigma}$-inference process. Then S_{0} is unsatisfiable if and only if $\square \in S_{i}$ for some i.

Completeness of Ordered Resolution

Theorem (Completeness)

Take any well-founded ordering \succ and consider the selection function σ that selects all maximal w.r.t. $\succ_{\text {lit }}$ literals. Let S_{0} be a set of clauses and $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be a fair $\mathbb{B} \mathbb{R}_{\sigma}$-inference process. Then S_{0} is unsatisfiable if and only if $\square \in S_{i}$ for some i.

Lemma
The limit S_{ω} is saturated.
Lemma
The limit S_{ω} is logically equivalent to the initial set S_{0}.
Lemma
A saturated set S of clauses is unsatisfiable if and only if $\square \in S$.

Corollaries

Completeness of Binary Resolution. Binary resolution is complete. Compactness. Let S be a countably infinite set of clauses. Then S is unsatisfiable if and only if it contains a finite unsatisfiable subset. Note. The assumption of being countably infinite can be dropped.

Problem: search space grows too fast

Idea: remove some clauses from the search space. We will consider later how clauses can be removed without compromising completeness.

Inference Process with Deletion

Let \mathbb{I} be an inference system. Consider an inference process with two kinds of step $S_{i} \Rightarrow S_{i+1}$:

1. I-inference;
2. deletion of a clause in S_{i}, that is

$$
S_{i+1}=S_{i}-\{C\},
$$

where $C \in S_{i}$.

Fairness: Persistent Clauses and Limit

Consider an inference process

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

A clause C is called persistent if

$$
\exists i \forall j \geq i\left(C \in S_{j}\right) .
$$

The limit S_{ω} of the inference process is the set of all persistent clauses:

$$
S_{\omega}=\bigcup_{i=0,1, \ldots j \geq i} \bigcap_{j} .
$$

Fairness

The process is called \mathbb{I}-fair if every inference with persistent premises in S_{ω} has been applied, that is, if

is an inference in \mathbb{I} and $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{\omega}$, then $C \in S_{i}$ for some i.

Deletion rules

Tautology: a clause of the form $p \vee \neg p \vee C$. Tautology deletion: deletion of tautologies from the search space.
Finite multiset: like a set but elements may occur more than once. Example: $\{1,2,2,5,5,5\}$. A clause can be considered as a multiset of its literals.
A clause C_{1} is said to subsume any clause $C_{1} \vee C_{2}$, where C_{2} is non-empty. In other words, C_{1} subsumes C_{2} if and only if C_{1} is a submultiset of C_{2}.
Subsumption deletion: deletion of subsumed clauses from the search space.

Completeness with deletion rules

Subsumption and tautology deletion does not compromise completeness of binary and ordered resolution.
That is, for every fair inference process with subsumption a tautology deletion, if the initial set of clauses is unsatisfiable, then the limit of the process contains the empty clause.

Example: inference process with deletion

$\begin{aligned} & (1) \\ & (2) \\ & (3) \\ & (4) \end{aligned}$	$\begin{aligned} & \neg p \vee \neg q \\ & \neg p \vee \frac{\neg q}{q} \\ & p \vee \frac{\neg q}{q} \\ & p \vee \underline{q} \end{aligned}$	input input input input	
(1)	$\neg p \vee \neg q$	input	
(2)	$\neg p \vee \bar{q}$	input	
(3)	$p \vee \neg \bar{q}$	input	
(4)	$p \vee q$	input	
(5)	$\neg p \vee \neg p$	BR	$(1,2)$

(1)	$\neg p \vee \neg \frac{q 9}{}$	input	
(2)	$\neg p \vee \underline{q}$	input	
(3)	$p \vee \neg \frac{q}{q}$	input	
(4)	$p \vee \underline{q}$	input	
(5)	$\neg p \vee \neg p$	BR	$(1,2)$
(6)	$\underline{\neg p}$	Fact	(5)
(3)	$p \vee \neg q$	input	
(4)	$p \vee \underline{q}$	input	
(6)	$\neg p$	Fact	(5)

Example: inference process with deletion

(3)	$p \vee \neg q$	input	
(4)	$p \vee \underline{q}$	input	
(6)	$\neg p$	Fact	(5)
(3)	$p \vee \neg q$	input	
(4)	$p \vee \underline{q}$	input	
(6)	$\neg p$	Fact	(5)
(7)	$\underline{p} \vee \underline{p}$	BR	$(3,4)$

(3) (4)	$p \vee \neg q$		input	
	$p \vee q$	in	ut	
(6)	$\neg p$		ct	(5)
(7)	$\bar{p} \vee p$			$(3,4)$
(8)	\bar{p}			(7)
(6)		Fact	(5)	
(8)		Fact	(7)	
		Fact	(5)	
(8)		Fact	(7)	
(9)		BR	$(6,8)$	

[^0]: In other words, we compare literals by first comparing the atoms of these literals and if the atoms are enisal define the nerative literal to be greater.

