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Binary Resolution Inference System

The binary resolution inference system, denoted by BR, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).
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Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.
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Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference rule is sound if every inference of this rule is sound.
I An inference system is sound if every inference rule in this

system is sound.

Theorem
BR is sound.
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Consequence of Soundness

Theorem
Let S be a set of clauses. If � can be derived from S in BR, then S is
unsatisfiable.



Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.
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Writing derivations in the linear form

(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) ¬p Fact (5)
(7) p ∨ p BR (3,4)
(8) p Fact (7)
(9) � BR (6,8)



Completeness

BR is complete, that is, if a set of clauses is unsatisfiable, then one
can derive an empty clause from this set.



Selection Function

The binary resolution inference system has too many inferences.
There are restrictions on resolution that allow for fewer inferences but
preserve completeness.

To define these systems we need a new notion.

A literal selection function selects one or more literals in every
non-empty clause.

We will sometimes denote selected literals by underlining them, e.g.,

p ∨ ¬q
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Binary Resolution with Selection

The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Binary resolution with selection is incomplete.

However, it is complete for some well-behaved selection functions.
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Unrestricted binary resolution and binary resolution
with selection

Consider the selection function that selects all literals in a clause.
Then the binary resolution rule:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

becomes a special case of binary resolution with selection.



Literal Orderings

Consider any total ordering � on propositional variables. We want to
extend it to literals.

Let L1 = (¬)A1 and L2 = (¬)A2 be literals. We let L1 �lit L2 if and only
if one of the following conditions holds:

1. A1 � A2; or
2. A1 = A2, L1 is negative and L2 is positive.

In other words, we compare literals by first comparing the atoms of
these literals and if the atoms are equal define the negative literal to
be greater.
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Ordered resolution

Fix an ordering � on the set of propositional variables and let �lit be
corresponding literal ordering. Consider the selection function σ that
selects all maximal w.r.t. �lit literals.

Theorem
BRσ is complete, that is, for every unsatisfiable set of clauses S one
can derive the empty clause from clauses in S using inferences in
BRσ.
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Ordered resolution: example

Assume q � p.
(1) ¬p ∨ ¬q input
(2) ¬p ∨ q input
(3) p ∨ ¬q input
(4) p ∨ q input
(5) ¬p ∨ ¬p BR (1,2)
(6) p ∨ p BR (3,4)
(7) p Fact (6)
(8) ¬p BR (6,7)
(9) � BR (6,8)

Note: fewer inferences are enabled compared to unrestricted binary
resolution.
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Inference Process

Inference process: sequence of sets of clauses S0,S1, . . ., denoted by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

C1 . . . Cn

C

in I such that {C1, . . . ,Cn} ⊆ Si ;
2. Si+1 = Si ∪ {C}.

An I-inference process is an inference process whose every step is
an I-step.
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Property

Lemma
Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a clause C
belongs to some Si . Then Si is derivable in I from S0.

Can we prove the inverse?
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Limit and Fairness

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
clauses

⋃
i Si .

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit S∞.
The process is called fair if for every I-inference

C1 . . . Cn

C
,

if {C1, . . . ,Cn} ⊆ S∞, then there exists i such that C ∈ Si .
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Completeness, reformulated

Theorem Let I be an inference system. The following conditions are
equivalent.

1. I is complete.
2. For every unsatisfiable set of clauses S0 and any fair I-inference

process with the initial set S0, the limit of this inference process
contains �.



Saturated Set of Clauses

Let I be an inference system and S be a set of clauses. S is called
saturated with respect to I, or simply I-saturated, if for every inference
of I with premises in S, the conclusion of this inference also belongs
to S.

The closure of S with respect to I, or simply I-closure, is the smallest
set S′ containing S and saturated with respect to I.



Completeness of Ordered Resolution

Theorem (Completeness)
Take any well-founded ordering � and consider the selection function
σ that selects all maximal w.r.t. �lit literals. Let S0 be a set of clauses
and S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BRσ-inference process. Then S0 is
unsatisfiable if and only if � ∈ Si for some i.

Lemma
The limit Sω is saturated.

Lemma
The limit Sω is logically equivalent to the initial set S0.

Lemma
A saturated set S of clauses is unsatisfiable if and only if � ∈ S.
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Corollaries

Completeness of Binary Resolution. Binary resolution is complete.
Compactness. Let S be a countably infinite set of clauses. Then S is
unsatisfiable if and only if it contains a finite unsatisfiable subset.
Note. The assumption of being countably infinite can be dropped.



Problem: search space grows too fast

Idea: remove some clauses from the search space.
We will consider later how clauses can be removed without
compromising completeness.



Inference Process with Deletion

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. I-inference;
2. deletion of a clause in Si , that is

Si+1 = Si − {C},

where C ∈ Si .



Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .



Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .



Deletion rules

Tautology: a clause of the form p ∨ ¬p ∨ C. Tautology deletion:
deletion of tautologies from the search space.
Finite multiset: like a set but elements may occur more than once.
Example: {1,2,2,5,5,5}. A clause can be considered as a multiset
of its literals.
A clause C1 is said to subsume any clause C1 ∨ C2, where C2 is
non-empty. In other words, C1 subsumes C2 if and only if C1 is a
submultiset of C2.
Subsumption deletion: deletion of subsumed clauses from the search
space.



Completeness with deletion rules

Subsumption and tautology deletion does not compromise
completeness of binary and ordered resolution.
That is, for every fair inference process with subsumption a tautology
deletion, if the initial set of clauses is unsatisfiable, then the limit of
the process contains the empty clause.



Example: inference process with deletion
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