Outline

Substitutions and Unification
Substitutions
Lifting
Unification

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y)
$$

is unsatisfiable.

The transformation of this formula to CNF gives us two clauses:

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y)
$$

It is valid if and only if its negation

$$
\neg((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))
$$

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

Example

Suppose we want to prove (establish validity of)

$$
(\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y) .
$$

It is valid if and only if its negation

$$
\neg((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))
$$

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

$$
\begin{aligned}
& p(x, a) \\
& \neg p(b, y) .
\end{aligned}
$$

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$; - Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$; - $p(b, a)$ and $p(b, a)$ are unsatisfiable (e.g., by resolution).

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;

Example

How can we check unsatisfiability of

$$
\begin{aligned}
& (\forall x) p(x, a) \\
& (\forall y) \neg p(b, y) ?
\end{aligned}
$$

- Since we have $(\forall x) p(x, a)$, we also have $p(b, a)$;
- Since we have $(\forall y) \neg p(b, y)$, we also have $\neg p(b, a)$;
- $p(b, a)$ and $p(b, a)$ are unsatisfiable (e.g., by resolution).

Ideas

Note that we established unsatisfiability by

- Substituting terms for variables, e.g. b for x in $p(x, a)$;
- Using propositional resolution.

Ideas

Note that we established unsatisfiability by

- Substituting terms for variables, e.g. b for x in $p(x, a)$;
- Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
different variables, denotes the substitution θ such that
- Application of this substitution to an expression E : simultaneous
replacement of x_{i} by t_{i}.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

- Application of this substitution to an expression E: simultaneous replacement of x_{i} by t_{i}.
- The result of the application of a substitution θ to E is denoted by E θ.

Substitution

- A substitution θ is a mapping from variables to terms such that the set $\{x \mid \theta(x) \neq x\}$ is finite.
- This set is called the domain of θ.
- Notation: $\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, where x_{1}, \ldots, x_{n} are pairwise different variables, denotes the substitution θ such that

$$
\theta(x)= \begin{cases}t_{i} & \text { if } x=x_{i} ; \\ x & \text { if } x \notin\left\{x_{1}, \ldots, x_{n}\right\} .\end{cases}
$$

- Application of this substitution to an expression E : simultaneous replacement of x_{i} by t_{i}.
- The result of the application of a substitution θ to E is denoted by E θ.
- Since substitutions are functions, we can define their composition (writen $\sigma \tau$ instead of $\tau \circ \sigma$). Note that we have $E(\sigma \tau)=(E \sigma) \tau$.

Exercise

Suppose we have two substitutions

$$
\begin{aligned}
& \left\{x_{1} \mapsto s_{1}, \ldots, x_{m} \mapsto s_{m}\right\} \text { and } \\
& \left\{y_{1} \mapsto t_{1}, \ldots, y_{n} \mapsto t_{n}\right\} .
\end{aligned}
$$

How can we write their composition using the same notation?

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E.
> some instances of the term $f(x, a, g(x))$ are:

- but the term $f(b, a, g(c))$ is not an instance of this term.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)), \\
& f(g(b), a, g(g(b))) ;
\end{aligned}
$$

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)) \\
& f(g(b), a, g(g(b)))
\end{aligned}
$$

- but the term $f(b, a, g(c))$ is not an instance of this term.

Ground instance: instance with no variables.

Instance

An instance of an expression (that is term, atom, literal, or clause) E is obtained by applying a substitution to E. Examples:

- some instances of the term $f(x, a, g(x))$ are:

$$
\begin{aligned}
& f(x, a, g(x)) \\
& f(y, a, g(y)) \\
& f(a, a, g(a)) \\
& f(g(b), a, g(g(b)))
\end{aligned}
$$

- but the term $f(b, a, g(c))$ is not an instance of this term.

Ground instance: instance with no variables.

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent S is unsatisfiable; 2. S^{*} is unsatisfiable; Note that hy comnactness the last condition is equivalent to there exists a finite unsatisfiable set of ground instances of clauses in S

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of se
of arbitrary clauses to checking inconsistency of sets of ground
clauses \ldots the only problem is that S^{*} can be infinite even if S is finite.

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of sets of arbitrary clauses to checking inconsistency of sets of ground clauses...

Herbrand's Theorem

For a set of clauses S denote by S^{*} the set of ground instances of clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S^{*} is unsatisfiable;

Note that by compactness the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of clauses in S.

The theorem reduces the problem of checking inconsistency of sets of arbitrary clauses to checking inconsistency of sets of ground clauses ... the only problem is that S^{*} can be infinite even if S is finite.

Lifting

Lifting is a technique for proving completeness theorems in the following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

But there is an infinite number of such inferences.

Lifting, Example

Consider two (non-ground) clauses $p(x, a) \vee q_{1}(x)$ and $\neg p(y, z) \vee q_{2}(y, z)$. If the signature contains function symbols, then both clauses have infinite sets of instances:

$$
\begin{array}{r|l}
\left\{p(r, a) \vee q_{1}(r)\right. & r \text { is ground }\} \\
\left\{\neg p(s, t) \vee q_{2}(s, t)\right. & s, t \text { are ground }\}
\end{array}
$$

We can resolve such instances if and only if $r=s$ and $t=a$. Then we can apply the following inference

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

But there is an infinite number of such inferences.

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Is this always possible?

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the form

$$
\frac{p(s, a) \vee q_{1}(s) \neg p(s, a) \vee q_{2}(s, a)}{q_{1}(s) \vee q_{2}(s, a)}(\mathrm{BR})
$$

by a single non-ground inference

$$
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)}(\mathrm{BR})
$$

Is this always possible? Yes!

$$
\begin{equation*}
\frac{p(x, a) \vee q_{1}(x) \neg p(y, z) \vee q_{2}(y, z)}{q_{1}(y) \vee q_{2}(y, a)} \tag{BR}
\end{equation*}
$$

Note that the substitution $\{x \mapsto y, z \mapsto a\}$ is a solution of the "equation" $p(x, a)=p(y, z)$.

What should we lift?

- Selection function σ.
- Calculus $\mathbb{B}_{\mathbb{R}_{\sigma}}$.
- Ordering \succ, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve equations $s=t$ between terms and between atoms.

What should we lift?

- Selection function σ.
- Calculus $\mathbb{B}_{\mathbb{R}}$.
- Ordering \succ, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve equations $s=t$ between terms and between atoms.

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$. In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$. In a similar way we can define solutions to systems of equations $s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$. We call such solutions simultaneous unifiers of s_{1}, \ldots, s_{n} and

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$.
In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$.
In a similar way we can define solutions to systems of equations
$s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$.
We call such solutions s imultaneous unifiers of $s_{1} \ldots \ldots s_{n}$ and

Unifier

Unifier of expressions s_{1} and s_{2} : a substitution θ such that $s_{1} \theta=s_{2} \theta$.
In other words, a unifier is a solution to an "equation" $s_{1}=s_{2}$.
In a similar way we can define solutions to systems of equations $s_{1}=s_{1}^{\prime}, \ldots, s_{n}=s_{n}^{\prime}$.
We call such solutions simultaneous unifiers of s_{1}, \ldots, s_{n} and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general solution if for every other solution σ there exists a substitution τ such that $\theta \tau=\sigma$.
In a similar way can define a most general unifier.
Consider terms $f\left(x_{1}, g\left(x_{1}\right), x_{2}\right)$ and $f\left(y_{1}, y_{2}, y_{2}\right)$.
(Some of) their unifiers are
$\theta_{1}=\left\{y_{1} \mapsto x_{1}, y_{2} \mapsto g\left(x_{1}\right), x_{2} \mapsto g\left(x_{1}\right)\right\}$ and
$\theta_{2}=\left\{y_{1} \mapsto a, y_{2} \mapsto g(a), x_{2} \mapsto g(a), x_{1} \mapsto a\right\}:$
$f\left(x_{1}, g\left(x_{1}\right), x_{2}\right) \theta_{1}=f\left(x_{1}, g\left(x_{1}\right), g\left(x_{1}\right)\right)$;
$f\left(y_{1}, y_{2}, y_{2}\right) \theta_{1}=f\left(x_{1}, g\left(x_{1}\right), g\left(x_{1}\right)\right)$;
$f\left(x_{1}, g\left(x_{1}\right), x_{2}\right) \theta_{2}=f(a, g(a), g(a)) ;$
$f\left(y_{1}, y_{2}, y_{2}\right) \theta_{2}=f(a, g(a), g(a))$.
But only θ_{1} is most general.

Unification

Let E be a set of equations. An isolated equation in E is any equation $x=t$ in it such that x has exactly one occurrence in E.
input: a finite set of equations E
output: a solution to E or failure.

begin

while there exists a non-isolated equation $(s=t) \in E \underline{\text { do }}$

case (s, t) of

$(t, t) \Rightarrow$ remove this equation from E
$(x, t) \Rightarrow$ if x occurs in t then halt with failure
else replace x by t in all other equations of E
$(t, x) \Rightarrow$ replace this equation by $x=t$
and do the same as in the case (x, t)
$(c, d) \Rightarrow$ halt with failure
$\left(c, f\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ halt with failure
$\left(f\left(t_{1}, \ldots, t_{n}\right), c\right) \Rightarrow$ halt with failure
$\left(f\left(s_{1}, \ldots, s_{m}\right), g\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ halt with failure
$\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \Rightarrow$ replace this equation by the set

$$
s_{1}=t_{1}, \ldots, s_{n}=t_{n}
$$

end while
Now E has the form $\left\{x_{1}=r_{1}, \ldots, x_{l}=r_{l}\right\}$ and every equation in it is isolated return the substitution $\left\{x_{1} \mapsto r_{1}, \ldots, x_{l} \mapsto r_{1}\right\}$
end

Examples

$$
\begin{aligned}
& \{h(g(f(x), a))=h(g(y, y))\} \\
& \{h(f(y), y, f(z))=h(z, f(x), x)\} \\
& \{h(g(f(x), z))=h(g(y, y))\}
\end{aligned}
$$

Occurs check

- The check " x occurs in t " is called an occurs check.
- In Prolog, the predicate = implements unification without occurs check.
- There is also a predicate (and a command) for unification with occurs check.

Properties

Theorem Suppose we run the unification algorithm on $s=t$. Then

- If s and t are unifiable, then the algorithms terminates and outputs a most general unifier of s and t.
- If s and t are not unifiable, then the algorithms terminates with failure.
Notation (slightly ambiguous):
- mgu(s, t) for a most general unifier;
- $\operatorname{mas}(E)$ for a most qeneral solution.

Properties

Theorem Suppose we run the unification algorithm on $s=t$. Then

- If s and t are unifiable, then the algorithms terminates and outputs a most general unifier of s and t.
- If s and t are not unifiable, then the algorithms terminates with failure.
Notation (slightly ambiguous):
- $m g u(s, t)$ for a most general unifier;
- $m g s(E)$ for a most general solution.

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Exercise

Consider a trivial system of equations $\}$ or $\{a=a\}$.
Which substitutions are solutions to it?
What is the set of most general solutions to it?

Properties

Theorem
Let C be a clause and E a set of equations. Then
$\left\{D \in C^{*} \mid \exists \theta(C \theta=D\right.$ and θ is a solution to $\left.E)\right\}=(\operatorname{Cmgs}(E))^{*}$.

