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Example

Suppose we want to prove (establish validity of)

(∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y).

It is valid if and only if its negation

¬((∃y)(∀x)p(x , y)→ (∀x)(∃y)p(x , y))

is unsatisfiable.
The transformation of this formula to CNF gives us two clauses:

p(x ,a)
¬p(b, y).
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Example

How can we check unsatisfiability of

(∀x)p(x ,a)
(∀y)¬p(b, y)?

I Since we have (∀x)p(x ,a), we also have p(b,a);
I Since we have (∀y)¬p(b, y), we also have ¬p(b,a);
I p(b,a) and p(b,a) are unsatisfiable (e.g., by resolution).
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Ideas

Note that we established unsatisfiability by

I Substituting terms for variables, e.g. b for x in p(x ,a);
I Using propositional resolution.

Are these two ingredients sufficient to have a complete procedure?
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Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I The result of the application of a substitution θ to E is denoted by
Eθ.

I Since substitutions are functions, we can define their composition
(writen στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .
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Exercise

Suppose we have two substitutions

{x1 7→ s1, . . . , xm 7→ sm} and
{y1 7→ t1, . . . , yn 7→ tn}.

How can we write their composition using the same notation?



Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.



Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.



Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.



Instance

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.



Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem (Herbrand)
Let S be a set of clauses. The following conditions are equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

Note that by compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking inconsistency of sets
of arbitrary clauses to checking inconsistency of sets of ground
clauses . . . the only problem is that S∗ can be infinite even if S is
finite.
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Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.



Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.
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Lifting, Idea
The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible? Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).
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What should we lift?

I Selection function σ.
I Calculus BRσ.
I Ordering �, if we use ordered resolution.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms.
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Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.



Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.



Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.

In other words, a unifier is a solution to an “equation” s1 = s2.

In a similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n.
We call such solutions simultaneous unifiers of s1, . . . , sn and
s′1, . . . , s

′
n.



(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ.
In a similar way can define a most general unifier.
Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.



Unification
Let E be a set of equations. An isolated equation in E is any equation x = t
in it such that x has exactly one occurrence in E .

input: a finite set of equations E
output: a solution to E or failure.
begin

while there exists a non-isolated equation (s = t) ∈ E do
case (s, t) of
(t , t) ⇒ remove this equation from E
(x , t) ⇒ if x occurs in t then halt with failure

else replace x by t in all other equations of E
(t , x) ⇒ replace this equation by x = t

and do the same as in the case (x , t)
(c, d) ⇒ halt with failure
(c, f (t1, . . . , tn)) ⇒ halt with failure
(f (t1, . . . , tn), c) ⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn)) ⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn)) ⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end while
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end



Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}



Occurs check

I The check “x occurs in t” is called an occurs check.
I In Prolog, the predicate = implements unification without occurs

check.
I There is also a predicate (and a command) for unification with

occurs check.



Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.
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Which substitutions are solutions to it?

What is the set of most general solutions to it?
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Properties

Theorem
Let C be a clause and E a set of equations. Then

{D ∈ C∗ | ∃θ(Cθ = D and θ is a solution to E)} = (Cmgs(E))∗.
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