Outline

Colored Proofs, Interpolation and Symbol Elimination
Interpolation

Theorem

Let A, B be closed formulas and let $A \vdash B$.

Then there exists a formula I such that

1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;
Interpolation

Theorem
Let A, B be closed formulas and let $A \vdash B$.

Then there exists a formula I such that
1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;

Any formula I with this property is called an interpolant of A and B. Essentially, an interpolant is a formula that is
1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.
Interpolation

Theorem
Let A, B be closed formulas and let $A \vdash B$.

Then there exists a formula I such that
1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;

Any formula I with this property is called an interpolant of A and B. Essentially, an interpolant is a formula that is
1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.

When we deal with refutations rather than proofs and have an unsatisfiable set $\{A, B\}$, it is convenient to use reverse interpolants of A and B, that is, a formula I such that
1. $A \vdash I$ and $\{I, B\}$ is unsatisfiable;
2. every symbol of I occurs both in A and B;
Interpolation Through Colors

- There are three colors: blue, red and green.
There are three colors: blue, red and green.

Each symbol (function or predicate) is colored in exactly one of these colors.
Interpolation Through Colors

- There are three colors: blue, red and green.
- Each symbol (function or predicate) is colored in exactly one of these colors.
- We have two formulas: A and B.
- Each symbol in A is either blue or green.
- Each symbol in B is either red or green.
There are three colors: blue, red and green.

Each symbol (function or predicate) is colored in exactly one of these colors.

We have two formulas: A and B.

Each symbol in A is either blue or green.

Each symbol in B is either red or green.

We know that $\vdash A \rightarrow B$.

Our goal is to find a green formula I such that
1. $\vdash A \rightarrow I$;
2. $\vdash I \rightarrow B$.
Interpolation with Theories

- **Theory** T: any set of closed green formulas.
- $C_1, \ldots, C_n \vdash_T C$ denotes that the formula $C_1 \land \ldots \land C_n \rightarrow C$ holds in all models of T.
- **Interpreted symbols**: symbols occurring in T.
- **Uninterpreted symbols**: all other symbols.
Interpolation with Theories

- Theory T: any set of closed green formulas.
- $C_1, \ldots, C_n \vdash_T C$ denotes that the formula $C_1 \land \ldots \land C_1 \rightarrow C$ holds in all models of T.
- Interpreted symbols: symbols occurring in T.
- Uninterpreted symbols: all other symbols.

Theorem
Let A, B be formulas and let $A \vdash_T B$.

Then there exists a formula I such that
1. $A \vdash_T I$ and $I \vdash B$;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. $A \vdash I$ and $I \vdash_T B$;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.
Local Derivations

A derivation is called local (well-colored) if each inference in it

\[
\frac{C_1 \; \cdots \; C_n}{C}
\]

either has no blue symbols or has no red symbols. That is, one cannot mix blue and red in the same inference.
Local Derivations: Example

- $A := \forall x (x = a)$
- $B := c = b$
- Interpolant: $\forall x \forall y (x = y)$ (note: universally quantified!)
- Reverse interpolant: $\exists x \exists y (x \neq y)$
Local Derivations: Example

- $A := \forall x(x = a)$
- $B := c = b$
- Interpolant: $\forall x \forall y(x = y)$ (note: universally quantified!)
- Reverse interpolant: $\exists x \exists y(x \neq y)$

A local refutation in the superposition calculus:

$$
\begin{array}{c}
\frac{x = a}{x = y} \\
\frac{y = a}{c \neq b} \\
\frac{y \neq b}{\bot}
\end{array}
$$
Shape of a local derivation
Symbol Eliminating Inference

- At least one of the premises is not green.
- The conclusion is green.

\[
\begin{align*}
x &= a & y &= a \\
x &= y & c \neq b
\end{align*}
\]

\[
\begin{align*}
y &\neq b \\
\bot
\end{align*}
\]
Extracting Interpolants from Local Proofs

Theorem

Let Π be a local refutation. Then one can extract from Π in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground.
Theorem

Let Π be a local refutation. Then one can extract from Π in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground. This reverse interpolant is a boolean combination of conclusions of symbol-eliminating inferences of Π.

What is remarkable in this theorem:

▶ No restriction on the calculus (only soundness required) – can be used with theories.
▶ Can generate interpolants in theories where no good interpolation algorithms exist.
Theorem

Let Π be a local refutation. Then one can extract from Π in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground. This reverse interpolant is a boolean combination of conclusions of symbol-eliminating inferences of Π.

What is remarkable in this theorem:

- No restriction on the calculus (only soundness required) – can be used with theories.
- Can generate interpolants in theories where no good interpolation algorithms exist.
Interpolation: Examples in Vampire

fof(fA, axiom, q(f(a)) \& \neg q(f(b))).
fof(fB, conjecture, ?[V]: V != c).
% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula L
vampire(left_formula).
 fof(fA,axiom, q(f(a)) & ~q(f(b))).
vampire(end_formula).
% formula R
vampire(right_formula).
 fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).
Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.
Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.

Then we declare the symbols to be eliminated colored and ask Vampire to output symbol-eliminating inferences.
Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.

Then we declare the symbols to be eliminated colored and ask Vampire to output symbol-eliminating inferences.

This technique was used in our experiments on automatic loop invariant generation.