Outline

Colored Proofs, Interpolation and Symbol Elimination

Interpolation

Theorem
Let A, B be closed formulas and let $A \vdash B$.
Then there exists a formula I such that

1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;

Interpolation

Theorem
Let A, B be closed formulas and let $A \vdash B$.
Then there exists a formula I such that

1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;

Any formula / with this property is called an interpolant of A and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.

Interpolation

Theorem
Let A, B be closed formulas and let $A \vdash B$.
Then there exists a formula I such that

1. $A \vdash I$ and $I \vdash B$;
2. every symbol of I occurs both in A and B;

Any formula / with this property is called an interpolant of A and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.
When we deal with refutations rather than proofs and have an unsatisfiable set $\{A, B\}$, it is convenient to use reverse interpolants of A and B, that is, a formula / such that

1. $A \vdash I$ and $\{I, B\}$ is unsatisfiable;
2. every symbol of I occurs both in A and B;

Interpolation Through Colors

- There are three colors: blue, red and green.

Interpolation Through Colors

- There are three colors: blue, red and green.
- Each symbol (function or predicate) is colored in exactly one of these colors.

Interpolation Through Colors

- There are three colors: blue, red and green.
- Each symbol (function or predicate) is colored in exactly one of these colors.
- We have two formulas: A and B.
- Each symbol in A is either blue or green.
- Each symbol in B is either red or green.

Interpolation Through Colors

- There are three colors: blue, red and green.
- Each symbol (function or predicate) is colored in exactly one of these colors.
- We have two formulas: A and B.
- Each symbol in A is either blue or green.
- Each symbol in B is either red or green.
- We know that $\vdash A \rightarrow B$.
- Our goal is to find a green formula / such that

1. $\vdash A \rightarrow I$;
2. $\vdash I \rightarrow B$.

Interpolation with Theories

- Theory T : any set of closed green formulas.
- $C_{1}, \ldots, C_{n} \vdash_{T} C$ denotes that the formula $C_{1} \wedge \ldots \wedge C_{1} \rightarrow C$ holds in all models of T.
- Interpreted symbols: symbols occurring in T.
- Uninterpreted symbols: all other symbols.

Interpolation with Theories

- Theory T : any set of closed green formulas.
- $C_{1}, \ldots, C_{n} \vdash_{T} C$ denotes that the formula $C_{1} \wedge \ldots \wedge C_{1} \rightarrow C$ holds in all models of T.
- Interpreted symbols: symbols occurring in T.
- Uninterpreted symbols: all other symbols.

Theorem

Let A, B be formulas and let $A \vdash_{T} B$.
Then there exists a formula I such that

1. $A \vdash_{T} I$ and $I \vdash B$;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. $A \vdash I$ and $I \vdash_{T} B$;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.

Local Derivations

A derivation is called local (well-colored) if each inference in it

either has no blue symbols or has no red symbols.
That is, one cannot mix blue and red in the same inference.

Local Derivations: Example

- $A:=\forall x(x=a)$
- $B:=c=b$
- Interpolant: $\forall x \forall y(x=y)$ (note: universally quantified!)
- Reverse interpolant: $\exists x \exists y(x \neq y)$

Local Derivations: Example

- $A:=\forall x(x=a)$
- $B:=c=b$
- Interpolant: $\forall x \forall y(x=y)$ (note: universally quantified!)
- Reverse interpolant: $\exists x \exists y(x \neq y)$

A local refutation in the superposition calculus:

$$
\frac{x=a \quad y=a}{\frac{x=y}{y \neq b}} \quad c \neq b,
$$

Shape of a local derivation

Symbol Eliminating Inference

- At least one of the premises is not green.
- The conclusion is green.

$$
\frac{\frac{x=a \quad y=a}{x=y} \quad c \neq b}{\frac{y \neq b}{\perp}}
$$

Extracting Interpolants from Local Proofs

Theorem

Let Π be a local refutation. Then one can extract from Π in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground.

Extracting Interpolants from Local Proofs

Theorem

Let Π be a local refutation. Then one can extract from Π in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground. This reverse interpolant is a boolean combination of conclusions of symbol-eliminating inferences of Π.

Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from \square in linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas in Π are ground. This reverse interpolant is a boolean combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

- No restriction on the calculus (only soundness required) - can be used with theories.
- Can generate interpolants in theories where no good interpolation algorithms exist.

Interpolation: Examples in Vampire

fof(fA, axiom, $q(f(a)) \& \sim q(f(b)))$.
fof(fB, conjecture, ?[V]: V != c).

Interpolation: Examples in Vampire

```
% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula L
vampire(left_formula).
    fof(fA, axiom, q(f(a)) & ~q(f(b)) ).
vampire(end_formula).
% formula R
vampire(right_formula).
    fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).
```


Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.

Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.

Then we declare the symbols to be eliminated colored and ask Vampire to output symbol-eliminating inferences.

Symbol Elimination

Colored proofs can also be used for an interesting application. Suppose that we have a set of formulas in some language and want to derive consequences of these formulas in a subset of this language.

Then we declare the symbols to be eliminated colored and ask Vampire to output symbol-eliminating inferences.
This technique was used in our experiments on automatic loop invariant generation.

