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Equality



First-order logic with equality

I Equality predicate: '.
I Equality: l ' r .

The order of literals in equalities does not matter, that is, we consider
an equality l ' r as a multiset consisting of two terms l , r , and so
consider l ' r and r ' l equal.



Equality. An Axiomatisation

I reflexivity axiom: x ' x ;
I symmetry axiom: x ' y → y ' x ;
I transitivity axiom: x ' y ∧ y ' z → x ' z;
I function substitution axioms:

x1 ' y1 ∧ . . . ∧ xn ' yn → f (x1, . . . , xn) ' f (y1, . . . , yn), for every
function symbol f ;

I predicate substitution axioms:
x1 ' y1 ∧ . . . ∧ xn ' yn ∧ P(x1, . . . , xn)→ P(y1, . . . , yn) for every
predicate symbol P.



Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy (but the literal
ordering needs to satisfy additional properties).

Moreover, we will first define it only for ground clauses. On the
theoretical side,

I Completeness is first proved for ground clauses only.
I It is then “lifted” to arbitrary clauses using a technique called

lifting.
I Moreover, this way some notions (ordering, selection function)

can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.
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Simple Ground Superposition Inference System

Superposition: (right and left)

l ' r ∨ C s[l] ' t ∨ D
s[r ] ' t ∨ C ∨ D

(Sup),
l ' r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6' s ∨ C
C

(ER),

Equality Factoring:

s ' t ∨ s ' t ′ ∨ C
s ' t ∨ t 6' t ′ ∨ C

(EF),
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Example

f (a) ' a ∨ g(a) ' a
f (f (a)) ' a ∨ g(g(a)) 6' a
f (f (a)) 6' a



Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) ' a we can derive any clause of the form

f m(a) ' f n(a)

where m,n ≥ 0.

Worst of all, the derived clauses can be much larger than the original
clause f (a) ' a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.
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Atom and literal orderings on equalities

Equality atom comparison treats an equality s ' t as the multiset
{̇s, t }̇.

I (s′ ' t ′) �lit (s ' t) if {̇s′, t ′}̇ � {̇s, t }̇.
I (s′ 6' t ′) �lit (s 6' t) if {̇s′, t ′}̇ � {̇s, t }̇.

Finally, we assert that all non-equality literals be greater than all
equality literals.



Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)
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s[r ] ' t ∨ C ∨ D
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where (i) l � r , (ii) s[l] � t , (iii) l ' r is strictly greater than any literal in C, (iv)
s[l] ' t is greater than or equal to any literal in D.

Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s ' t ∨ s ' t ′ ∨ C
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where (i) s � t � t ′; (ii) s ' t is greater than or equal to any literal in C.



Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l ' r ∨ C s[l] ' t ∨ D

s[r ] ' t ∨ C ∨ D
(Sup),

l ' r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l ' r is strictly greater than any literal in C, (iv)
s[l] ' t is greater than or equal to any literal in D.
Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s ' t ∨ s ' t ′ ∨ C
s ' t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s ' t is greater than or equal to any literal in C.



Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l ' r ∨ C s[l] ' t ∨ D

s[r ] ' t ∨ C ∨ D
(Sup),

l ' r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l ' r is strictly greater than any literal in C, (iv)
s[l] ' t is greater than or equal to any literal in D.
Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s ' t ∨ s ' t ′ ∨ C
s ' t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s ' t is greater than or equal to any literal in C.



Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) ' >.

For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) ' > ∨ q(a) 6' > ∨ a 6= b.
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Binary resolution inferences can be represented by
inferences in the superposition system

We ignore selection functions.

A ∨ C1 ¬A ∨ C2

C1 ∨ C2
(BR)

A ' > ∨ C1 A 6' > ∨ C2

> 6' > ∨ C1 ∨ C2
(Sup)

C1 ∨ C2
(ER)



Exercise

Positive factoring can also be represented by inferences in the
superposition system.



Simplification Ordering

The only restriction we imposed on term orderings was
well-foundedness and stability under substitutions. When we deal
with equality, these two properties are insufficient. We need a third
property, called monotonicity.
An ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r ];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:

2a. If l � r , then s[lθ] � s[rθ].
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A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s].

Consider an example.

f (a) ' a
f (f (a)) ' a
f (f (f (a))) ' a

Then both f (f (a)) ' a and f (f (f (a))) ' a are redundant. The clause
f (a) ' a is a logical consequence of {f (f (a)) ' a, f (f (f (a))) ' a} but
is not redundant.
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Term Algebra

Term algebra TA(Σ) of signature Σ:

I Domain: the set of all ground terms of Σ.
I Interpretation of any function symbol f or constant c is defined as

follows::

fTA(Σ)(t1, . . . , tn)
def⇔ f (t1, . . . , tn);

cTA(Σ)
def⇔ c.



Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sn) if

1. |g(t1, . . . , tn)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tn)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).
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Example

w(a) = 1
w(b) = 2
w(f ) = 3
w(g) = 0

|f (g(a), f (a,b))|

= |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.
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Same Property

The conclusion is strictly smaller than the rightmost premise:

l ' r ∨ C s[l] ' t ∨ D

s[r ] ' t ∨ C ∨ D
(Sup),

l ' r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l ' r is strictly greater than any literal
in C, (iv) s[l] ' t is greater than or equal to any literal in D.



New redundancy
Consider a superposition with a unit left premise:

l ' r s[l] ' t ∨ D

s[r ] ' t ∨ D
(Sup),

Note that we have

l ' r , s[r ] ' t ∨ D |= s[l] ' t ∨ D

and we have

s[l] ' t ∨ D � s[r ] ' t ∨ D.

If we also have l ' r � s[r ] ' t ∨ D, then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).
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