
Outline

Inference Systems

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System: Example

Represent the natural number n by the string | . . . |︸︷︷︸
n times

ε.

The following inference system contains 6 inference rules for deriving
equalities between expressions containing natural numbers, addition
+ and multiplication ·.

ε = ε (ε)
x = y
|x = |y

(|)

ε+ x = x (+1)
x + y = z
|x + y = |z

(+2)

ε · x = ε (·1)
x · y = u y + u = z

|x · y = z
(·2)

Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Proof in this Inference System

Proof of ||ε · ||ε = ||||ε (that is, 2 · 2 = 4).

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = ||ε
(+1)

|ε+ ||ε = |||ε
(+2)

||ε+ ||ε = ||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Derivation in this Inference System

Derivation of ||ε · ||ε = |||||ε from ε+ ||ε = |||ε (that is, 2 + 2 = 5 from
0 + 2 = 3).

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = |||ε
|ε+ ||ε = ||||ε

(+2)

||ε+ ||ε = |||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are buit using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.
I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:

I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Can this be used for checking (un)satisfiability

1. What happens when the empty clause cannot be derived from
S?

2. How can one search for possible derivations of the empty
clause?

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there
exists a derivation of � from S in BR.

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined
inference system.

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there
exists a derivation of � from S in BR.

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined
inference system.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if

I If all selected literals are positive, then all maximal (w.r.t. �)
literals in C are selected.

In other words, either a negative literal is selected, or all maximal
literals must be selected.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if

I If all selected literals are positive, then all maximal (w.r.t. �)
literals in C are selected.

In other words, either a negative literal is selected, or all maximal
literals must be selected.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

	Inference Systems

