
Outline

From Theory to Practice



From theory to practice

I Preprocessing and CNF transformation;
I Superposition system;
I Orderings;
I Selection functions;
I Fairness (saturation algorithms);
I Redundancy.



Vampire’s preprocessing (incomplete list)
1. (Optional) Select a relevant subset of formulas.
2. (Optional) Add theory axioms;
3. Rectify the formula.
4. If the formula contains any occurrence of > or ⊥, simplify the formula.
5. Remove if-then-else and let-in connectives.
6. Flatten the formula.
7. Apply pure predicate elimination.
8. (Optional) Remove unused predicate definitions.
9. Convert the formula into equivalence negation normal form.

10. Use a naming technique to replace some subformulas by their names.
11. Convert the formula into negation normal form.
12. Skolemize the formula.
13. (Optional) Replace equality axioms.
14. Determine a literal ordering to be used.
15. Transform the formula into its conjunctive normal form.
16. (Optional) Function definition elimination.
17. (Optional) Inequality splitting.
18. Remove tautologies.
19. Pure literal elimination.
20. Remove clausal definitions.



Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?

Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.



Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.



Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.



Demodulation, Non-Ground Case

l ' r L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Easier to understand:

l ' r L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).



Demodulation, Non-Ground Case

l ' r L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Easier to understand:

l ' r L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).



Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.



Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.



Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.



Generating and Simplifying Inferences

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.



Redundancy Checking

Redundancy-checking occurs upon addition of a new child C. It
works as follows

I Retention test: check if C is redundant.
I Forward simplification: check if C can be simplified using a

simplifying inference.
I Backward simplification: check if C simplifies or makes

redundant an old clause.



Examples

Retention test:

I tautology-check;
I subsumption.

(A clause C subsumes a clause D if there exists a substitution θ such
that Cθ is a submultiset of D.)

Simplification:

I demodulation (forward and backward);
I subsumption resolution (forward and backward).



Some redundancy criteria are expensive

I Tautology-checking is based on congruence closure.
I Subsumption and subsumption resolution are NP-complete.



Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?

Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.



Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.

The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.



Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).

One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.



Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.



Term Indexing

I Different indexes are needed to support different operations;
I The set of clauses is dynamically (and often) changes, so that

index maintenance must be efficient.
I Memory is an issue (badly designed indexes may take much

more space than clauses).
I The inverse retrieval conditions (the same algorithm on clauses)

may require very different indexing techniques (e.g., forward and
backward subsumption).

I Sensitive to the signature of the problem: techniques good for
small signatures are too slow and too memory consuming for
large signatures.



Term Indexing in Vampire

I Various hash tables.
I Flatterms in constant memory for storing temporary clauses.
I Code trees for forward subsumption;
I Code trees with precompiled ordering constraints;
I Discrimination trees;
I Substitution trees;
I Variables banks;
I Shared terms with renaming lists;
I Path index with compiled database joins;
I . . .



Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.



Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.

I In practice, the retention test may include other checks, resulting
in the loss of completeness, for example, we may decide to
discard too heavy clauses.



Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.



How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating
inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.



Given Clause Algorithm (no Simplification)

input: init : set of clauses;
var active, passive, queue: sets of clauses;
var current : clauses ;
active := ∅;
passive := init;
while passive 6= ∅ do

* current := select(passive); (* clause selection *)
move current from passive to active;

* queue:=infer(current , active); (* generating inferences *)
if � ∈ queue then return unsatisfiable;
passive := passive ∪ queue

od;
return satisfiable



Given Clause Algorithm (with Simplification)

In fact, there is more than one . . .



Otter vs. Discount Saturation

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses do not participate in inferences.



Otter vs. Discount Saturation, Newly Generated
Clauses

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses do not participate in inferences.



Otter vs. Discount Saturation, Newly Generated
Clauses

Otter saturation algorithm:

I active clauses participate in generating inferences with the
selected clause and simplifying inferences with new clauses;

I new clauses participate in simplifying inferences with all clauses;
I passive clauses participate in simplifying inferences with new

clauses.

Discount saturation algorithm:

I active clauses participate in generating inferences and
simplifying inferences with the selected clause and simplifying
inferences with the new clauses;

I new clauses participate in simplifying inferences with the
selected and active clauses;

I passive clauses do not participate in inferences.



Otter Saturation Algorithm
input: init : set of clauses;
var active, passive, unprocessed : set of clauses;
var given, new : clause;
active := ∅;
unprocessed := init;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;

* if retained(new) then (* retention test *)
* simplify new by clauses in active ∪ passive ;(* forward simplification *)

if new = � then return unsatisfiable;
* if retained(new) then (* another retention test *)
* delete and simplify clauses in active and (* backward simplification *)

passive using new;
move the simplified clauses to unprocessed;
add new to passive

if passive = ∅ then return satisfiable or unknown
* given := select(passive); (* clause selection *)

move given from passive to active;
* unprocessed:=infer(given, active); (* generating inferences *)



Discount Saturation Algorithm

input: init : set of clauses;
var active, passive, unprocessed : set of clauses;
var given, new : clause;
active := ∅;
unprocessed := init;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;

* if retained(new) then (* retention test *)
* simplify new by clauses in active ; (* forward simplification *)

if new = � then return unsatisfiable;
* if retained(new) then (* retention test *)
* delete and simplify clauses in active using new;(* backward simplification *)

move the simplified clauses to unprocessed;
add new to passive

if passive = ∅ then return satisfiable or unknown
* given := select(passive); (* clause selection *)
* simplify given by clauses in active; (* forward simplification *)
* if given = � then return unsatisfiable;

if retained(given) then (* retention test *)
* delete and simplify clauses in active using given; (* backward simplification *)

move the simplified clauses to unprocessed;
add given to active;
unprocessed:=infer(given, active); (* generating inferences *)



Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.



Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.



Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 10:1
--backward subsumption off
--time limit 60000

GRP140-1.p



Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 10:1
--backward subsumption off
--time limit 60000

GRP140-1.p


	From Theory to Practice

