Outline

Sorts and Theories

Sorts

Consider these statements:

1. Sort b consists of two elements: t and f;
2. Sort s has three different elements.

$$
\begin{aligned}
& t!=f \wedge(\forall x: b)(x \simeq t \vee x \simeq f) \\
& (\exists x: s)(\exists y: s)(\exists z: s)(x \nsim y \wedge x \nsucceq z \wedge y \nsucceq z)
\end{aligned}
$$

Sorts

Consider these statements:

1. Sort b consists of two elements: t and f;
2. Sort s has three different elements.

$$
\begin{aligned}
& t!=f \wedge(\forall x: b)(x \simeq t \vee x \simeq f) \\
& (\exists x: s)(\exists y: s)(\exists z: s)(x \nsucceq y \wedge x \nsucceq z \wedge y \nsucceq z)
\end{aligned}
$$

The unsorted version of it:

$$
\begin{aligned}
& (\forall x)(x \simeq t \vee x \simeq f) \\
& (\exists x)(\exists y)(\exists z)(x \nsim y \wedge x \nsim z \wedge y \nsucceq z)
\end{aligned}
$$

is unsatisfiable:

```
fof(1,axiom,t != f & ! [X] : X = t | X = f).
fof(1,axiom,? [X,Y,Z] : (X != Y & X != Z & Y != Z)).
vampire --splitting off
    --saturation_algorithm inst_gen sort1.tptp
```


Sorts in TPTP

```
tff(boolean_type,type,b: $tType).
tff(s_is_a_type,type,s: $tType).
% b is a sort
% s is a sort
tff(t_has_type_b,type,t : b). % t has sort b
tff(f_has_type_b,type,f : b). % f has sort b
tff(1,axiom,t != f & ! [X:b] : X = t | X = f).
tff(1,axiom,? [X:s,Y:s,Z:s] : (X != Y & X != Z & Y != Z)).
vampire --splitting off
    --saturation_algorithm inst_gen sort2.tptp
```


Pre-existing sorts

- \$i: sort of individuals. If is the default sort: if a symbol is not declared, it has this sort.
- \$int: sort of integers.
- \$rat: sort of rationals.
- \$real: sort of reals.

Integers

One can use concrete integers and some interpreted functions on them.

```
fof(1, conjecture,$sum (2, 2)=4).
vampire --inequality_splitting 0 int1.tptp
```


Interpreted Functions and Predicates on Integers

Functions:

- \$sum: addition $(x+y)$
- \$product: multiplication $(x \cdot y)$
- \$difference: difference $(x-y)$
- \$uminus: unary minus ($-x$)
- \$to_rat: conversion to rationals.
- \$to_real: conversion to reals.

Predicates:

- \$less: less than $(x<y)$
- \$lesseq: less than or equal to $(x \leq y)$
- \$greater: greater than $(x>y)$
- \$greatereq: greater than or equal to $(x \geq y)$

How Vampire Proves Problems in Arithmetic

- adding theory axioms;
- evaluating expressions, when possible;
- (future) SMT solving.

How Vampire Proves Problems in Arithmetic

- adding theory axioms;
- evaluating expressions, when possible;
- (future) SMT solving.

Example:

$$
(x+y)+z=x+(z+y)
$$

```
fof(1,conjecture,
    ! [X:$int,Y:$int,Z:$int] :
        $sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).
```

vampire --inequality_splitting 0 int2.tptp

How Vampire Proves Problems in Arithmetic

- adding theory axioms;
- evaluating expressions, when possible;
- (future) SMT solving.

Example:

$$
(x+y)+z=x+(z+y) .
$$

fof (1, conjecture,
! [X:\$int, $Y: \$ i n t, Z: \$ i n t]$: \$sum (\$sum (X, Y) , Z) $=$ \$sum (X, \$sum ($\mathrm{Z}, \mathrm{Y})$)) .
vampire --inequality-splitting 0 int2.tptp

- You can add your own axioms;
- you can replace Vampire axioms by your own: use

