
Outline

Sorts and Theories



Sorts
Consider these statements:

1. Sort b consists of two elements: t and f ;
2. Sort s has three different elements.

t! = f ∧ (∀x : b)(x ' t ∨ x ' f )
(∃x : s)(∃y : s)(∃z : s)(x 6' y ∧ x 6' z ∧ y 6' z)

The unsorted version of it:

(∀x)(x ' t ∨ x ' f )
(∃x)(∃y)(∃z)(x 6' y ∧ x 6' z ∧ y 6' z)

is unsatisfiable:

fof(1,axiom,t != f & ! [X] : X = t | X = f).
fof(1,axiom,? [X,Y,Z] : (X != Y & X != Z & Y != Z)).

vampire --splitting off
--saturation algorithm inst gen sort1.tptp



Sorts
Consider these statements:

1. Sort b consists of two elements: t and f ;
2. Sort s has three different elements.

t! = f ∧ (∀x : b)(x ' t ∨ x ' f )
(∃x : s)(∃y : s)(∃z : s)(x 6' y ∧ x 6' z ∧ y 6' z)

The unsorted version of it:

(∀x)(x ' t ∨ x ' f )
(∃x)(∃y)(∃z)(x 6' y ∧ x 6' z ∧ y 6' z)

is unsatisfiable:

fof(1,axiom,t != f & ! [X] : X = t | X = f).
fof(1,axiom,? [X,Y,Z] : (X != Y & X != Z & Y != Z)).

vampire --splitting off
--saturation algorithm inst gen sort1.tptp



Sorts in TPTP

tff(boolean type,type,b: $tType). % b is a sort
tff(s is a type,type,s: $tType). % s is a sort

tff(t has type b,type,t : b). % t has sort b
tff(f has type b,type,f : b). % f has sort b

tff(1,axiom,t != f & ! [X:b] : X = t | X = f).
tff(1,axiom,? [X:s,Y:s,Z:s] : (X != Y & X != Z & Y != Z)).

vampire --splitting off
--saturation algorithm inst gen sort2.tptp



Pre-existing sorts

I $i: sort of individuals. If is the default sort: if a symbol is not
declared, it has this sort.

I $int: sort of integers.
I $rat: sort of rationals.
I $real: sort of reals.



Integers

One can use concrete integers and some interpreted functions on
them.

fof(1,conjecture,$sum(2,2)=4).

vampire --inequality splitting 0 int1.tptp



Interpreted Functions and Predicates on Integers

Functions:

I $sum: addition (x + y)
I $product: multiplication (x · y)
I $difference: difference (x − y)
I $uminus: unary minus (−x)
I $to rat: conversion to rationals.
I $to real: conversion to reals.

Predicates:

I $less: less than (x < y)
I $lesseq: less than or equal to (x ≤ y)
I $greater: greater than (x > y)
I $greatereq: greater than or equal to (x ≥ y)



How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

fof(1,conjecture,
! [X:$int,Y:$int,Z:$int] :
$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off



How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

fof(1,conjecture,
! [X:$int,Y:$int,Z:$int] :

$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off



How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

fof(1,conjecture,
! [X:$int,Y:$int,Z:$int] :

$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off


	Sorts and Theories

