
Outline

Introduction



General

I All information on the Web page
http://www.voronkov.com/lics.cgi.

I Assessment: exam (80%), exercises (20%).
I Exercises: at the end of (almost) every week with the deadline in

one week.

http://www.voronkov.com/lics.cgi


Computer Systems and Correctness

Suppose we design a (complex) system, which may contain various
components, for example, sensors, networks, computers. All of these
components are using software.

We have requirements on how the system should function, for
example safety, reliability, security, availability, absence of deadlocks
etc.

How can one ensure that the system satisfies these requirements?

Modern computer systems are unreliable.



Computer Systems and Correctness

Suppose we design a (complex) system, which may contain various
components, for example, sensors, networks, computers. All of these
components are using software.

We have requirements on how the system should function, for
example safety, reliability, security, availability, absence of deadlocks
etc.

How can one ensure that the system satisfies these requirements?

Modern computer systems are unreliable.



Computer Systems and Correctness

Suppose we design a (complex) system, which may contain various
components, for example, sensors, networks, computers. All of these
components are using software.

We have requirements on how the system should function, for
example safety, reliability, security, availability, absence of deadlocks
etc.

How can one ensure that the system satisfies these requirements?

Modern computer systems are unreliable.



Computer Systems and Correctness

Suppose we design a (complex) system, which may contain various
components, for example, sensors, networks, computers. All of these
components are using software.

We have requirements on how the system should function, for
example safety, reliability, security, availability, absence of deadlocks
etc.

How can one ensure that the system satisfies these requirements?

Modern computer systems are unreliable.



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!
if (!array) return 0;

for (i = 0;i <= length;i++)
array[i] = 0;

return array;
}

Is this program correct?

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!
if (!array) return 0;

for (i = 0;i <= length;i++)
array[i] = 0;

return array;
}

Is this program correct?
Hardly: it writes into memory that has not been allocated.

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!
if (!array) return 0;

for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length); // may return 0!

if (!array) return 0;

for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?
No: it may write to the null address.

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!

if (!array) return 0;
for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!

if (!array) return 0;
for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?
No: it initialises the array by zeros

We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!

if (!array) return 0;
for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?
We discussed correctness of a program without ever defining what it
means.

So what is correctness?



Small Example: Software
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialised by a non-zero value */

int* allocateArray(int length)
{
int i;
int* array;
array = malloc(sizeof(int)*length);

// may return 0!

if (!array) return 0;
for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?
We discussed correctness of a program without ever defining what it
means.
So what is correctness?



Notes

I We could spot the first two errors without knowing anything about
the intended meaning of the program. But we had to understand
the meaning of C programs in general and some specific
properties of programming in C.

I To understand the last “error” we had to know something about
the the intended behaviour of the program.



Notes

I We could spot the first two errors without knowing anything about
the intended meaning of the program. But we had to understand
the meaning of C programs in general and some specific
properties of programming in C.

I To understand the last “error” we had to know something about
the the intended behaviour of the program.



Example: Circuit Design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.



Example: Circuit Design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.



Example: Circuit Design

We used a circuit C1 in a processor and would like to replace it by
another circuit C2. For example, we may believe that the use of C2
results in a lower energy consumption.

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is sufficient to prove that C2 is
functionally equivalent to C1.



Another Example: Vending Machine

1. The vending machine contains a drink storage, a coin slot, and a
drink dispenser. The drink storage stores drinks of two kinds:
beer and coffee. We are only interested in whether a particular
kind of drink is currently being stored or not, but not interested in
the amount of it.

2. The coin slot can accommodate up to three coins.
3. The drink dispenser can store at most one drink. If it contains a

drink, this drink should be removed before the next one can be
dispensed.

4. A can of beer costs two coins. A cup of coffee costs one coin.
5. There are two kinds of customers: students and professors.

Students drink only beer, professors drink only coffee.
6. From time to time the drink storage can be recharged.

We would like to prove some properties of this model, for example
that a student will never leave money in the coin slot.



Another Example: Vending Machine

1. The vending machine contains a drink storage, a coin slot, and a
drink dispenser. The drink storage stores drinks of two kinds:
beer and coffee. We are only interested in whether a particular
kind of drink is currently being stored or not, but not interested in
the amount of it.

2. The coin slot can accommodate up to three coins.
3. The drink dispenser can store at most one drink. If it contains a

drink, this drink should be removed before the next one can be
dispensed.

4. A can of beer costs two coins. A cup of coffee costs one coin.
5. There are two kinds of customers: students and professors.

Students drink only beer, professors drink only coffee.
6. From time to time the drink storage can be recharged.

We would like to prove some properties of this model, for example
that a student will never leave money in the coin slot.



How to Establish Correctness

I Consider the system (or a computer program) as a mathematical
object. To do this, we will have to build a formal model of the
system (or the program).

I Use a formal language for expressing intended properties.
I The language must have a semantics that explains what are

possible interpretations of the sentences of the formal language.
The semantics is normally based on the notions is true, is false,
satisfies.

I Write a specification, that is, intended properties of the system in
this language.

I Prove formally that the model satisfies the specification.



How to Establish Correctness

I Consider the system (or a computer program) as a mathematical
object. To do this, we will have to build a formal model of the
system (or the program).

I Use a formal language for expressing intended properties.

I The language must have a semantics that explains what are
possible interpretations of the sentences of the formal language.
The semantics is normally based on the notions is true, is false,
satisfies.

I Write a specification, that is, intended properties of the system in
this language.

I Prove formally that the model satisfies the specification.



How to Establish Correctness

I Consider the system (or a computer program) as a mathematical
object. To do this, we will have to build a formal model of the
system (or the program).

I Use a formal language for expressing intended properties.
I The language must have a semantics that explains what are

possible interpretations of the sentences of the formal language.
The semantics is normally based on the notions is true, is false,
satisfies.

I Write a specification, that is, intended properties of the system in
this language.

I Prove formally that the model satisfies the specification.



How to Establish Correctness

I Consider the system (or a computer program) as a mathematical
object. To do this, we will have to build a formal model of the
system (or the program).

I Use a formal language for expressing intended properties.
I The language must have a semantics that explains what are

possible interpretations of the sentences of the formal language.
The semantics is normally based on the notions is true, is false,
satisfies.

I Write a specification, that is, intended properties of the system in
this language.

I Prove formally that the model satisfies the specification.



How to Establish Correctness

I Consider the system (or a computer program) as a mathematical
object. To do this, we will have to build a formal model of the
system (or the program).

I Use a formal language for expressing intended properties.
I The language must have a semantics that explains what are

possible interpretations of the sentences of the formal language.
The semantics is normally based on the notions is true, is false,
satisfies.

I Write a specification, that is, intended properties of the system in
this language.

I Prove formally that the model satisfies the specification.



What is Logic?

Mathematical logic is a branch of science that deals with notions such
as

I syntax and semantics;
I proof theory and model theory;
I reasoning.



How to Prove Properties of Programs or Systems?

I Hire all people with PhD in mathematical logic in the world;
I Delegate the problem of proving to a computer program.



How to Prove Properties of Programs or Systems?

I Hire all people with PhD in mathematical logic in the world;

I Delegate the problem of proving to a computer program.



How to Prove Properties of Programs or Systems?

I Hire all people with PhD in mathematical logic in the world;
I Delegate the problem of proving to a computer program.



Computational Logic

Computational logic deals with applications of logic in computer
science and computer engineerings, including

I software and hardware verification;
I circuit design;
I constraint satisfaction;
I knowledge representation and reasoning;
I semantic Web;
I planning;
I databases (semantics and query optimisation);
I theorem proving in mathematics;
I . . .



This Course

I propositional logic;
I satisfiability checking in propositional logic;
I semantic tableaux;
I binary decision diagrams (BDDs);
I quantified boolean formulas;
I propositional logic of finite domains;
I state-changing systems and transition systems;
I temporal logic;
I model checking.



End of Lecture 1

Slides for lecture 1 end here . . .


	Introduction

