
Outline

LTL: Linear Temporal Logic
Computation Tree
Linear Temporal Logic
Using Temporal Formulas
Equivalences of Temporal Formulas
Expressing Transitions

Computation Tree

Let S = (S, In,T ,X ,dom,L) be a transition system and s ∈ S be a
state. The computation tree for S starting at s is the following
(possibly infinite) tree.

1. The nodes of the tree are labeled by states in S.
2. The root of the tree is labeled by s.
3. For every node s′ in the tree, its children are exactly such nodes

s′′ ∈ S that (s′, s′′) ∈ T .

Computation Trees and Paths

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

A computation path for S: any branch s0, s1, . . . in the tree.

Computation Trees and Paths

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

A computation path for S: any branch s0, s1, . . . in the tree.

Computation Trees and Paths

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

A computation path for S: any branch s0, s1, . . . in the tree.

Computation Trees and Paths

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

A computation path for S: any branch s0, s1, . . . in the tree.

Computation Trees and Paths

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

A computation path for S: any branch s0, s1, . . . in the tree.

Computation

Every path in the computation tree corresponds to a computation:

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

Computation

Every path in the computation tree corresponds to a computation:

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

Computation

Every path in the computation tree corresponds to a computation:

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

Computation

Every path in the computation tree corresponds to a computation:

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

Computation

Every path in the computation tree corresponds to a computation:

xs1:

¬xs2:

xs1:

xs1: ¬xs2:

xs1: ¬xs2:

xs1: ¬xs2:

· · · · · · · · ·

xs1:

xs1:

· · · · · ·

· · · · · ·

Properties

I Computation paths for a transition system are exactly all
branches in the computation trees for this transition system.

I Let n be a node in a computation tree C for S labeled by s′. Then
the subtree of C rooted at s′ is the computation tree for S starting
at s′. In other words, every subtree of a computation tree rooted
at some node is itself a computation tree.

I For every transition system S and state s there exists a unique
computation tree for S starting at s, up to the order of children.

Properties

I Computation paths for a transition system are exactly all
branches in the computation trees for this transition system.

I Let n be a node in a computation tree C for S labeled by s′. Then
the subtree of C rooted at s′ is the computation tree for S starting
at s′. In other words, every subtree of a computation tree rooted
at some node is itself a computation tree.

I For every transition system S and state s there exists a unique
computation tree for S starting at s, up to the order of children.

Properties

I Computation paths for a transition system are exactly all
branches in the computation trees for this transition system.

I Let n be a node in a computation tree C for S labeled by s′. Then
the subtree of C rooted at s′ is the computation tree for S starting
at s′. In other words, every subtree of a computation tree rooted
at some node is itself a computation tree.

I For every transition system S and state s there exists a unique
computation tree for S starting at s, up to the order of children.

LTL

Linear Temporal Logic is a logic for reasoning about properties of
computation paths.

Formulas are built in the same way as in propositional logic, with the
following additions:

1. If F is a formula, then hF , F , and ♦F are formulas;
2. If F and G are formulas, then F UG and F RG are formulas.h next

always (in future)
♦ sometimes (in future)
U until
R release

LTL

Linear Temporal Logic is a logic for reasoning about properties of
computation paths.

Formulas are built in the same way as in propositional logic, with the
following additions:

1. If F is a formula, then hF , F , and ♦F are formulas;
2. If F and G are formulas, then F UG and F RG are formulas.

h next
always (in future)

♦ sometimes (in future)
U until
R release

LTL

Linear Temporal Logic is a logic for reasoning about properties of
computation paths.

Formulas are built in the same way as in propositional logic, with the
following additions:

1. If F is a formula, then hF , F , and ♦F are formulas;
2. If F and G are formulas, then F UG and F RG are formulas.h next

always (in future)
♦ sometimes (in future)
U until
R release

Semantics (intuitive)

hF

♦F

F

F UG

F RG

F · · ·

· · · F · · ·

F F F · · · F F F · · ·

F F F · · · F G · · ·

G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.

Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2 s3 s4 s5 s6

π0 : π1 : π2 : π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).
To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2 s3 s4 s5 s6

π0 : π1 : π2 : π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).
To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2 s3 s4 s5 s6

π0 : π1 : π2 : π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.

For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).
To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2 s3 s4 s5 s6

π0 :

π1 : π2 : π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).

To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0

s1 s2 s3 s4 s5 s6

π0 :

π1 :

π2 : π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).

To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1

s2 s3 s4 s5 s6

π0 : π1 :

π2 :

π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).

To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2

s3 s4 s5 s6

π0 : π1 : π2 :

π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).

To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics

Unlike propositonal formulas, LTL formulas express properties of
computations or computation paths.
Let π = s0, s1, s2 . . . be a sequence of states and F be an LTL
formula.

π :

s0 s1 s2

s3 s4 s5 s6

π0 : π1 : π2 :

π3 :

We define the notion F is true on π (or F holds on π), denoted by
π |= F , by induction on F as follows.
For all i = 0,1, . . . denote by πi the sequence of states si , si+1, si+2 . . .
(note that π0 = π).
To define π |= F we will use πi |= G for some i and G. We will
sometimes (slightly informally) say that G is true in si or G holds in si
to mean that G is true on πi .

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.
2. π |= x = v if s0 |= x = v .
3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;

π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .
4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.
2. π |= x = v if s0 |= x = v .
3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;

π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .
4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.
2. π |= x = v if s0 |= x = v .
3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;

π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .
4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.

2. π |= x = v if s0 |= x = v .
3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;

π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .
4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.
2. π |= x = v if s0 |= x = v .

3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;
π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .

4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics, formally

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s0.

The semantics of formulas built using propositional connectives on π
is the same as in propositional logic where all subformulas are also
evaluated on π.

1. π |= > and π 6|= ⊥.
2. π |= x = v if s0 |= x = v .
3. π |= F1 ∧ . . . ∧ Fn if for all j = 1, . . . ,n we have π |= Fj ;

π |= F1 ∨ . . . ∨ Fn if for some j = 1, . . . ,n we have π |= Fj .
4. π |= ¬F if π 6|= F .
5. π |= F → G if either π 6|= F or π |= G;

π |= F ↔ G if either both π 6|= F and π 6|= G or both π |= F and
π |= G.

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;
π |= F if for all i ≥ 0 we have πi |= F .

7. π |= F UG if for some k ≥ 0 we have πk |= G and
π0 |= F , . . . , πk−1 |= F ;
π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;

π |= F if for all i ≥ 0 we have πi |= F .
7. π |= F UG if for some k ≥ 0 we have πk |= G and

π0 |= F , . . . , πk−1 |= F ;
π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1

hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;
π |= F if for all i ≥ 0 we have πi |= F .

7. π |= F UG if for some k ≥ 0 we have πk |= G and
π0 |= F , . . . , πk−1 |= F ;
π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1

hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;
π |= F if for all i ≥ 0 we have πi |= F .

7. π |= F UG if for some k ≥ 0 we have πk |= G and
π0 |= F , . . . , πk−1 |= F ;

π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1

hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;
π |= F if for all i ≥ 0 we have πi |= F .

7. π |= F UG if for some k ≥ 0 we have πk |= G and
π0 |= F , . . . , πk−1 |= F ;
π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1

hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Semantics of temporal operators
6. π |= hF if π1 |= F ;

π |= ♦F if for some k ≥ 0 we have πk |= F ;
π |= F if for all i ≥ 0 we have πi |= F .

7. π |= F UG if for some k ≥ 0 we have πk |= G and
π0 |= F , . . . , πk−1 |= F ;
π |= F RG if for all k ≥ 0, either πk |= G or there exists j < k
such that πj |= F .

s0 s1 s2 sk−1 sk sk+1hF F · · ·

♦F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·

Standard properties???

Two LTL formulas F and G are called equivalent, denoted F ≡ G, if
for every path π we have π |= F if and only if π |= G.

We are not interested in satisfiability, validity etc. for temporal
formulas.

For an LTL formula F we can consider two kinds of properties of S:

1. does F hold on some computation path for S from an initial state?
2. does F hold on all computation paths for S from an initial state?

Standard properties???

Two LTL formulas F and G are called equivalent, denoted F ≡ G, if
for every path π we have π |= F if and only if π |= G.

We are not interested in satisfiability, validity etc. for temporal
formulas.

For an LTL formula F we can consider two kinds of properties of S:

1. does F hold on some computation path for S from an initial state?
2. does F hold on all computation paths for S from an initial state?

Standard properties???

Two LTL formulas F and G are called equivalent, denoted F ≡ G, if
for every path π we have π |= F if and only if π |= G.

We are not interested in satisfiability, validity etc. for temporal
formulas.

For an LTL formula F we can consider two kinds of properties of S:

1. does F hold on some computation path for S from an initial state?
2. does F hold on all computation paths for S from an initial state?

Precedences of Connectives and Temporal Operators

Connective Precedence

¬, h,♦, 5
U,R 4
∧,∨ 3
→ 2
↔ 1

Expressing Some Properties

1. F never holds in two consecutive states.

(F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.

(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state.

(F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states.

♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2.

(hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often.

♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F

7. F holds in each even state and does not hold in each odd state
(states are counted from 0). F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0).

F ∧ (F ↔ h¬F).

Expressing Some Properties

1. F never holds in two consecutive states. (F → h¬F)

2. If F holds in a state s, it also holds in all states after s.
(F → F)

3. F holds in at most one state. (F → h ¬F)

4. F holds in at least two states. ♦(F ∧ h♦F)

5. Unless si is the first state of the path, if F holds in state si , then
G must hold in at least one of the two states just before si , that is
si−1 and si−2. (hF → G) ∧ (h hF → G ∨ hG)

6. F happens infinitely often. ♦F
7. F holds in each even state and does not hold in each odd state

(states are counted from 0). F ∧ (F ↔ h¬F).

Not all “reasonable” properties are expressible in LTL

p holds in all even states.

End of Lecture 19

Slides for lecture 19 end here . . .

Meaning of Some Formulas

I ♦ F ;

I (F → hF);
I ¬F U F ;
I F U¬F ;
I ♦F ∧ (F → hF);
I ♦F ;
I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);

I ¬F U F ;
I F U¬F ;
I ♦F ∧ (F → hF);
I ♦F ;
I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);
I ¬F U F ;

I F U¬F ;
I ♦F ∧ (F → hF);
I ♦F ;
I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);
I ¬F U F ;
I F U¬F ;

I ♦F ∧ (F → hF);
I ♦F ;
I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);
I ¬F U F ;
I F U¬F ;
I ♦F ∧ (F → hF);

I ♦F ;
I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);
I ¬F U F ;
I F U¬F ;
I ♦F ∧ (F → hF);
I ♦F ;

I F ∧ (F ↔ ¬ hF);

Meaning of Some Formulas

I ♦ F ;
I (F → hF);
I ¬F U F ;
I F U¬F ;
I ♦F ∧ (F → hF);
I ♦F ;
I F ∧ (F ↔ ¬ hF);

Equivalences: Unwinding Properties

♦F ≡ F ∨ h♦F
F ≡ F ∧ h F

F UG ≡ G ∨ (F ∧ h(F UG))
F RG ≡ G ∧ (F ∨ h(F RG))

Equivalences: Negation of Temporal Operators

¬ hF ≡ h¬F
¬♦F ≡ ¬F
¬ F ≡ ♦¬F

¬(F UG) ≡ ¬F R¬G
¬(F RG) ≡ ¬F U¬G

Expressing Temporal Operators Using U

♦F ≡ >UF
F ≡ ¬(>U¬F)

F RG ≡ ¬(¬F U¬G).

Therefore, all operators can be expressed using hand U.

Other Equivalences

♦(F ∨G) ≡ ♦F ∨ ♦G
(F ∧G) ≡ F ∧ G

But

(F ∨G) 6≡ F ∨ G
♦(F ∧G) 6≡ ♦F ∧ ♦G

How to Show that Two Formulas are not Equivalent?

Find a path that satisfies one of the formulas but not the other. For
example for (F ∨G) and F ∨ G.

F G F G · · ·

Formalization: Variables and Domains

variable domain explanation
st coffee {0,1} drink storage contains coffee
st beer {0,1} drink storage contains beer
disp {none,beer , coffee} content of drink dispenser
coins {0,1,2,3} number of coins in the slot
customer {none, student ,prof} customer

Transitions

1. Recharge which results in the drink storage having both beer
and coffee.

2. Customer arrives, after which a customer appears at the
machine.

3. Customer leaves, after which the customer leaves.
4. Coin insert , when the customer inserts a coin in the machine.
5. Dispense beer , when the customer presses the button to get a

can of beer.
6. Dispense coffee, when the customer presses the button to get a

cup of coffee.
7. Take drink , when the customer removes a drink from the

dispenser.

Reasoning About Transitions

Consider the following properties:

1. “one cannot have two beers in a row without inserting a coin”.
2. “If we never have two recharge transitions in a row, then the next

transition after a recharge must be a customer arrival”.

Note that they are about transitions, not about states.

How can one represent these properties?

Introduce a state variable denoting the next transition.

Reasoning About Transitions

Consider the following properties:

1. “one cannot have two beers in a row without inserting a coin”.
2. “If we never have two recharge transitions in a row, then the next

transition after a recharge must be a customer arrival”.

Note that they are about transitions, not about states.

How can one represent these properties?

Introduce a state variable denoting the next transition.

Reasoning About Transitions

Consider the following properties:

1. “one cannot have two beers in a row without inserting a coin”.
2. “If we never have two recharge transitions in a row, then the next

transition after a recharge must be a customer arrival”.

Note that they are about transitions, not about states.

How can one represent these properties?

Introduce a state variable denoting the next transition.

Example

Recharge def
= tr = Recharge ∧ customer = none ∧

st coffee′ ∧ st beer′ ∧
only(st coffee, st beer, tr).

Customer arrives def
= tr = Customer arrives ∧ customer = none ∧

customer′ 6= none ∧
only(customer, tr)

Coin insert def
= tr = Coin insert ∧

customer 6= none ∧ coins 6= 3 ∧
(coins = 0 → coins′ = 1) ∧
(coins = 1 → coins′ = 2) ∧
(coins = 2 → coins′ = 3) ∧
only(coins, tr).

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. One cannot have two beers without inserting a coin in between
getting them.

(tr = Dispense beer → g(tr 6= Dispence beer ∨
tr 6= Dispence beer U tr = Insert coin))

2. If we never have two recharge transitions in a row, then the next
transition after a recharge must be a customer arrival.

(tr = Recharge → gtr 6= Recharge) →
(tr = Recharge → gtr = Customer arrives)

3. The value of customer can only be changed as a result of either
Customer arrives or Customer leaves.

(
∧

v∈dom(customer)(customer = v ∧ gcustomer 6= v) →

(

tr = Customer arrives ∨ tr = Customer leaves)

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the
amount of coins in the slot will not change.

∧
v∈dom(coin) (customer = v ∧

∧
v∈dom(coin) (

tr = Coin insert ∧

∧
v∈dom(coin) (

gtr = Coin insert ∧

∧
v∈dom(coin) (

g gtr = Dispense beer →

∧
v∈dom(coin) (

g g gcustomer = v)

2. If the system is recharged from time to time, then after each
Dispense beer the customer will leave.

♦tr = Recharge →
(tr = Dispense beer → ♦tr = Customer leaves)

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the
amount of coins in the slot will not change.∧

v∈dom(coin) (customer = v ∧

∧
v∈dom(coin) (

tr = Coin insert ∧

∧
v∈dom(coin) (

gtr = Coin insert ∧

∧
v∈dom(coin) (

g gtr = Dispense beer →

∧
v∈dom(coin) (

g g gcustomer = v)

2. If the system is recharged from time to time, then after each
Dispense beer the customer will leave.

♦tr = Recharge →
(tr = Dispense beer → ♦tr = Customer leaves)

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the
amount of coins in the slot will not change.∧

v∈dom(coin) (customer = v ∧

∧
v∈dom(coin) (

tr = Coin insert ∧

∧
v∈dom(coin) (

gtr = Coin insert ∧

∧
v∈dom(coin) (

g gtr = Dispense beer →

∧
v∈dom(coin) (

g g gcustomer = v)

2. If the system is recharged from time to time, then after each
Dispense beer the customer will leave.

♦tr = Recharge →
(tr = Dispense beer → ♦tr = Customer leaves)

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice and then gets a beer, then the
amount of coins in the slot will not change.∧

v∈dom(coin) (customer = v ∧

∧
v∈dom(coin) (

tr = Coin insert ∧

∧
v∈dom(coin) (

gtr = Coin insert ∧

∧
v∈dom(coin) (

g gtr = Dispense beer →

∧
v∈dom(coin) (

g g gcustomer = v)

2. If the system is recharged from time to time, then after each
Dispense beer the customer will leave.

♦tr = Recharge →
(tr = Dispense beer → ♦tr = Customer leaves)

End of Lecture 20

Slides for lecture 20 end here . . .

	LTL: Linear Temporal Logic
	Computation Tree
	Linear Temporal Logic
	Using Temporal Formulas
	Equivalences of Temporal Formulas
	Expressing Transitions

