Outline

Propositional Logic of Finite Domains
Logic and Modelling
State-changing systems
PLFD
PLFD and propositional logic

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic ...

Logic and Modelling

Satisfiability-checking in propositional logic has many applications.

There is a gap between real-life problems and their representation in
propositional logic.

Many application domains have special modelling languages for
describing applications. Descriptions written in these languages can
then be translated to propositional logic ...

because propositional logic is not convenient for modelling.

S_ha ; g T . . .
Ha1 S] Circuit: propositional

BE itz] i3 Cout .
: i B RER —Dﬁf logic

library ieee;
use ieee.std.logic_1164.all;
entity FULL_ADDER is
port (A, B, Cin : in std-logic;
Sum, Cout : out std.logic);
end FULL_ADDER;
architecture BEHAV.FA of FULL_ADDER is
signal intl, int2, int3: std.-logic;
begin
Pl: process (A, B)
begin
intl<= A xor Bj;
int2<= A and B;
end process;
P2: process (intl, int2, Cin)
begin
Sum <= intl xor Cinj;
int3 <= intl and Cin;
Cout <= int2 or int3;
end process;
end BEHAV_FA;

Circuit: propositional
logic

Design: high-level
description (VHDL)

Scheduling

| Second Year Timetable 2009-2010 Level 2
Frintanie Monday Tuesday Wednesday Thursday Friday
Timetable
08:00 - - - - -
05:00 |MATH20701 CRAW TH.1 COMP20051 1.1 6GCOMP20340(8] 623 FCOMP2041114] G23 rCOMP20340(8] UNIX
GCOMP20340(4) 1T407 FCOMP20081(81 G23 1COMP20340(A) 1407
10 23 UNIX #COMP2005112 wi+] 623
MBS EAST BB ROSCOE 1.007 cCOMP20411(4] UNIX
HCOMP20081(8) G23
10:00 IMANZWIU+ BMAN21061 CRAW TH.1 GCOMP20340(2) G213 BMAN10621 ROSCOE 1.007 MATH20701 RENO €016
SIMON B (B.41) SCOMP20010 623 |GCOMP20340(4] 17407 FCOMP204111A 623 | 1COMP20340(2] UNIX
COMP20: " a1 Toot 1 114 G23 8] G23 |1COMP20340(A) 1T407
BMAN10621 1.1 HCOMP20010 UNIX rCOMP200511A wiv) G23
MATH20701 Mans Coop G20 GCOMP2041 1041 UNIX,
HCOMP20081(8) G23
11:00 |BMAN20871 MBS EAST B8 BMAN21061 CRAW TH.1 COMP20081/% 1.1 eCOMP20051(A wi+] G23 HCOMP20340(2) UNIX
MATH29631 SACKVILLE FO47 10 623 (&1 G623 10 UNIX #COMP 2034004 mda?
MATH10141 SIMON 3 FCOMP20241(43+] Toot 1 MATH29631 RENO GOD2 EEEN20027 RENO €008 1COMP20081(5] 623
BMAN10621 1.1 BMAN10621 ROSCOE 1.008 MATH20111 TURING G.107 rCOMP204110#) G23
FCOMP20241 LF15
MATH10141 RENO CO16
12:00 |BMAN21061 ROSCOE 1.008 COMP FASS LF15 G+#wCOMP20081(3] G23 MATH20111 TURING G.207 MATH20201 UNIPLE
EEEN20019 RENO C002 MATH20411 TURING G.107 MATH10141 RENO €016 cCOMP20O51IA wi+] G23 HCOMP20340(8] UNIX
MATH20411 SCH BLACKETT MATH20701 SCH MOS 1COMP20010 UNIX #COMP20340(4] 1T407
ICOMP20081(2) G23
ICOMP20411(4] G23
13:00 |FCOMP203401A1 1T407 COMP20411 1.1 - COMP20141 1.1 EEEN20019 SSB A16
FCOMP20340(3] UNIX MATH20701 TURING G.107
GCOMP20081(8) G23
1COMP20D51(A w3+] 623
MATH20411 TURING G.107
14:00 |BMAN20880 SIMON 3 (3.40) EEEN-LAB ? - BMAN21061 CRAW TH.2 COMP20141 1.1
EEEN20019 RENO CO09 COMP20411 1.1 MATH20201 ROSC A EEEN20019 SSB A16
MATH20111 TURING G.207
FCOMP20340(A) iT407
FCOMP20340(21 UNIX
COMP20081 18] 623
2COMP200511A wit+] G23
15:00 |#COMP200511A wit) G23 2nd Yr Tutorial - COMP20051 1.1 COMP20010 !
rCOMP20010 UNIX 6COMP20241(3+] Toot1 MATH29631 SACKVILLE G037
BMAN20880 SIMON 3 (3.40) EEEN-LAB ?
16:00 |MATH20201 RENO CO16 CARS20021 UNIPLEB - COMP20081 1.1 EEEN20027 RENO C009
HCOMP200511A wi+] G23 MATH20411 SCH BLACKETT BMAN20890 CRAW TH.2 MATH20111
FCI UNIX 1 (wi+] Toot 1 2nd ¥r Tutorial ZOCHONIS TH.B (G.7)
EEEN-LAB ?
17:00 - CARS20021 UNIPLB - BMAN20890 CRAW TH.2 -

m BMAN20880 weeks 8,9 & 10

[m] = = =

Constraints on Solutions

Registration Week Timetables
Year 1

& All First Years

& All Single Hons (+CBA/IC) A+W+X+Y+Z
S All Single Hons (-CBA/IC) W+X+Y+Z
& Group A - (CBA + IC)

5 Group B - (CSWBM: C+D)

Group C - (CSWBM)

& Group D - (CSwBM)

Group E - (CSE)

Group M - (CM)

Group W - (CS,SE,DC,AI)

Group X - (CS,SE,DC,AT)

Group ¥ - (CS,SE,DC,AT)

© Group Z - (CS,SE,DC,AI)

= Lab grouping A+Z

@ Lab grouping C+X

Lab grouping D+E+Y

2 Lab grouping D+Y

Lab grouping M+W

Service Units

Taking BMAN courseunits A+B

Year 2

& All Second Year
Joint Hons (CM)
Joint Hons (CSE)

& Joint Hons (CSWBM)
Lab Group F

Lab Group I
@ Single Hons (CBA)
& Single Hons (CS, SE, DC, AI)

Year 3

All Former Sol

All Third Years

Joint Hons (CM)

Joint Hons (CSWBM)

Single Hons (CBA)

Single Hons (Computer Science)

Single Hons (Internet Computing)

Single Hons (Software Engineering - Informatics)

Room Timetables

UG Teaching Rooms
@33 24 seats
Advisory ? seats
LF5 9 seats
LF6 9 seats
LF15 70 seats

LF17 27 seats
& 1T406 24 seats
& 1IT407 100 seats
PG Teaching Rooms
= 2.19 100 seats
& 2.15 40 seats
UG Labs
5 Toot1 40seats
= TootD 2Bseats
& Collab 2 4 Pods seats

Collab 1 8 Pods seats
& PEVELab ? seats
& G23 65 seats

3rdLab 61 seats

o

UNIX 70 seats
[All labs)
Meeting Rooms
120 ?seats
& 233 15seats
S Atlas 1 28 seats
= Atlas2 22seats
© 1T401 24 seats

 Mercury 24 seats

Rooms should have
a sufficient number
of seats.

A teacher cannot
teach two courses at
the same time.

Andrei cannot teach
at 9am.

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally

At each time moment, the sys-
tem is in a particular state.

The system state is changing in
time. There are actions (con-
trolled or not) that change the
state.

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally

Formally

At each time moment, the sys-
tem is in a particular state.

This state can be characterised
by values of some variables,
called the state variables.

The system state is changing in
time. There are actions (con-
trolled or not) that change the
state.

Actions change values of some
state variables.

Examples

» Reactive systems.
Reactive systems are systems whose role is to maintain an
ongoing interaction with their environment rather than produce
some final value upon termination. Typical examples of reactive
systems are air traffic control system, programs controlling
mechanical devices such as a train, a plane, or ongoing
processes such as a nuclear reactor.

Examples

» Reactive systems.
Reactive systems are systems whose role is to maintain an
ongoing interaction with their environment rather than produce
some final value upon termination. Typical examples of reactive
systems are air traffic control system, programs controlling
mechanical devices such as a train, a plane, or ongoing
processes such as a nuclear reactor.

» Concurrent systems.
Concurrency is a property of systems in which several
computations are executing simultaneously, and potentially
interacting with each other. A typical example is a computer
operating system.

Reasoning about state-changing systems

1. Build a formal model of this state-changing system which
describes, in particular, functioning of the system, or some
abstraction thereof.

Reasoning about state-changing systems

1. Build a formal model of this state-changing system which
describes, in particular, functioning of the system, or some
abstraction thereof.

2. Use a logic to specify and verify properties of the system.

Propositional Logic of Finite Domains (PLFD)

Our first step to modelling state-changing systems is to introduce a
logic in which we can express values of variables in state.

Propositional Logic of Finite Domains (PLFD)

Our first step to modelling state-changing systems is to introduce a
logic in which we can express values of variables in state.

PLFD is a family of logics. Each instance of PLFD is characterised by

» a set X of variables;

» a mapping dom, such that for every x € X, dom(x) is a
non-empty finite set, called the domain for x.

Syntax of PLFD

Formulas

» If x is a variable and v € dom(x) is a value in the domain of x,
then x = v is a formula, also called atomic formula, or simply
atom.

Syntax of PLFD

Formulas
» If x is a variable and v € dom(x) is a value in the domain of x,
then x = v is a formula, also called atomic formula, or simply
atom.

» Other formulas are built from atomic formulas as in propositional
logic, using the connectives T, 1, A, V, =, —, and <.

Semantics

» Interpretation for a set of variables X is a mapping / from X to
the set of values such that for all x € X we have /(x) € dom(x).

Semantics

» Interpretation for a set of variables X is a mapping / from X to
the set of values such that for all x € X we have /(x) € dom(x).

» Extend interpretations to mappings from formulas to boolean
values.

1. I(x =v)=1ifand only if /(x) = v.
2. If Ais not atomic, then as for propositional formulas.

Semantics

» Interpretation for a set of variables X is a mapping / from X to
the set of values such that for all x € X we have /(x) € dom(x).
» Extend interpretations to mappings from formulas to boolean
values.
1. I(x =v)=1ifand only if /(x) = v.
2. If Ais not atomic, then as for propositional formulas.
» The definitions of truth, models, validity, satisfiability, and
equivalence are defined exactly as in propositional logic.

Example

Let a variable x range over the domain {a, b, c}, that is
dom(x) = {a, b, c}. Then the following formula is valid:

X=a—>x=bvx=c.

Example

Let a variable x range over the domain {a, b, c}, that is
dom(x) = {a, b, c}. Then the following formula is valid:

X=a—>x=bvx=c.

But if dom(x) = {a. b, c, d}, then this formula is not valid. Indeed,

{X—=dit-x=a—-x=bvx=c.

Propositional Logic as PLFD

The domain for each variable is {0, 1}. Instead of atoms puse p = 1.

One can also use p = 0 for —p, since p = 0 is equivalentto —=(p = 1).

Propositional Logic as PLFD

The domain for each variable is {0, 1}. Instead of atoms puse p = 1.
One can also use p = 0 for —p, since p = 0 is equivalentto —=(p = 1).
This transformation preserves models. For example, models of

PAQ——r

are exactly the models of

p=1Ang=1—-r=0.

Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = {0, 1}.

When we have an instance of PLFD where both boolean and
non-boolean variables are used, we will use boolean variables as in
propositional logic:

» pinstead of p = 1;

» —pinstead of p = 0.

Translation of PLFD into Propositional Logic

» Introduce a propositional variable x, for each variable x and
value v € dom(x).

» Replace every atom x = v by x,;
» Add domain axiom for each variable x:

(Xv, V...V Xy,) A\ (Xy, V oXy),
]
i<j

where dom(x) = {vi,..., Va}.

Example

Let x range over the domain {a, b, c}. To check satisfiability of the
following formula

-(x=bVx=c).
we have to check satisfiability of the set of formulas

(XaV Xp V Xc) A (=Xa V =Xp) A (mXa V —Xe) A (—Xp V —Xe)A
=(Xp V Xc).

Preservation of models

Suppose that / is a propositional model of all the domain axioms.
Define a PLFD interpretation /" as follows:

def

I'x)y=v=1kEx,.

Theorem
Let F' be a PLFD formula and F be obtained by translating F’ to
propositional logic. If | = F, then I’ = F'.

Real-life modelling

Formalisation of numerous arguments used in 2003

The arguments used the following propositional variables.
1. can_start_.war: one can start a war against Iraq;
2. is_guilty: Iraq is guilty;
3. has_-WMD: Iraq has weapons of mass destruction.

Formalisation in propositional logic

If Iraq has weapons of mass

destruction, then it is guilty. has WMD — isguilty

Formalisation in propositional logic

If Iraq has weapons of mass

destruction, then it is guilty. has WMD — isguilty

If Irag has no weapons of
mass destruction, we can- —has_'WMD — —can _start_war

not start a war.

Formalisation in propositional logic

If Iraq has weapons of mass

destruction, then it is guilty. has WMD — isguilty

If Irag has no weapons of
mass destruction, we can- —has_'WMD — —can _start_war

not start a war.

We want to check whether,

under the above assump- can_start-war
tions, it is possible that a
war started against a coun- —is_guilty

try that is not guilty.

Formalisation in propositional logic

If Iraq has weapons of mass

destruction, then it is guilty. has WMD — isguilty

If Irag has no weapons of
mass destruction, we can- —has_'WMD — —can _start_war

not start a war.

We want to check whether,

under the above assump- can_start-war
tions, it is possible that a
war started against a coun- —is_guilty

try that is not guilty.

This set of formulas is unsatisfiable

Add a third value to a variable

At the UN, Colin Powell holds a model vial of anthrax, while arguing
that Iraq is likely to possess WMDs (5 February 2003)

Add a third value to a variable

At the UN, Colin Powell holds a model vial of anthrax, while arguing
that Iraq is likely to possess WMDs (5 February 2003)

Now let us consider a slightly different situation, when the domain of
the variable has_WMD consists of the values yes, no, and a third
value, for example, suspected.

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass

destruction, then it is guilty. has WMD = yes — is_guilty

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass

destruction, then it is guilty. has WMD = yes — is_guilty

If lrag has no weapons of has.WMD = no —s
mass destruction, we can- B
not start a war.

—can_start_war

Formalisation in propositional logic of finite domains

If Iraq has weapons of mass

destruction, then it is guilty. has WMD = yes — is_guilty

If Iraqdha? nc;. weapons of has WMD = no —s
mass destruction, we can- —can_start war
not start a war.

We want to check whether,

under the above assump- can_start_-war
tions, it is possible that a
war started against a coun- —is_guilty

try that is not guilty.

Translation to Propositional Logic

has-WMDes — is_guilty

has ' WMD,, — —can_start_war

can_start_war

—is_guilty

has_-WMDes Vv has_-WMD,
vhas_WMD suspected

—has_"WMDes V ~has_-WMD;,

—has_-WMDes V =has_-WMDgspected

—has_WMD, V ~has_WMDgyspected

Translation to Propositional Logic

has-WMDes — is_guilty
has_WMD,, — —can_start_war
can_start_war

—is_guilty

has-WMDes V has_-WMD,

Vvhas_ WM Dsuspected
—has_"WMDes V ~has_-WMD;,
—has_-WMDyes V —~has_-WMDgyspected
—has_WMD, V ~has_WMDgyspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translation to Propositional Logic

has_-WMDes — is_guilty
has_WMD,, — —can_start_war
can_start_war

—is_guilty

has-WMDes V has_-WMD,

Vvhas_ WM Dsuspecled
—has_-WMDes V —has_.WMDp,
—has_-WMDyes V —~has_-WMDgyspected
—has_WMD, V ~has_WMDgyspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

Translation to Propositional Logic
{can_start.war — 1,

is_guilty — 0,
has_-WMDes — is_guilty
has_.WMD,,, — —can_start_war has WMD +; suspected}
can_start_war
—is_guilty

has-WMDes V has_-WMD,

Vvhas_ WM Dsuspected
—has_-WMDes V —has_.WMDp,
—has_-WMDyes V —~has_-WMDgyspected
—has_WMD, V ~has_WMDgyspected

This set is satisfiable. Satisfiability can
be established by unit propagation.

Translating the propositional model to a
model of the original problem gives

Translation to Propositional Logic

These Weapons of Mass Destruction
cannot be displayed

{can_start.war — 1,

is_guilty — 0,

The weapons you are looking for are currently unavailable. The country
might be experiencing technical difficulties, or you may need to adjust

your weapons inspectors mandate. haS,WM D —> SUSpeCted}

Please try the following:

Click the Regime change button, or try again later.

If you are George Bush and typed the country’s name in the

address bar, make sure that it is spelled correctly. (IRAQ).

To check your weapons inspector settings, click the UN menu,

and then click Weapons Inspector Options. On the Security

Council tab, click Consensus. The settings should match

those provided by your government or NATO.

If the Security Council has enabled it, The United States of

America can examine your country and automatically discover

Weapons of Mass Destruction. S
If you would like to use the CIA to try and discover them,

click Detect weapons

® Some countries require 128 thousand troops to liberate them.

Click the Panic menu and then click About US foreign policy

to determine what regime they will install. AR ()

® If you are an Old Eurcpean Country trying to protect your APO
interests, make sure your options are left wide open as long as -2
possible. Click the Tools menu, and then click on League of 0 A S
Naticns. On the Advanced tab, scroll to the Head in the Sand » » ()

section and check settings for your exports to Irag.

Click the ‘* Somb button if you are Donald Rumsfeld.

	Propositional Logic of Finite Domains
	Logic and Modelling
	State-changing systems
	PLFD
	PLFD and propositional logic

