Outline

Propositional Logic
Ideas
Syntax Semantics
Formula Evaluation

Proposition

Propositional Logic formalises the notion of proposition, that is a statement that can be either true or false.

Proposition

Propositional Logic formalises the notion of proposition, that is a statement that can be either true or false.

There are simple propositions, called atomic. For example:

1. $0<1$;
2. Alan Turing was born in Manchester;
3. $1+1=10$.

Proposition

Propositional Logic formalises the notion of proposition, that is a statement that can be either true or false.

There are simple propositions, called atomic. For example:

1. $0<1$;
2. Alan Turing was born in Manchester;
3. $1+1=10$.

More complex propositions are built from simpler ones using a small number of constructs. Examples of more complex propositions:

1. If $0<1$, then Alan Turing was born in Manchester;
2. $1+1=10$ or $1+1 \neq 10$.

Truth

Each proposition is either true or false.

Truth

Each proposition is either true or false.
The truth value of an atomic proposition, that is, either true or false depends on an interpretation of such propositions.

Truth

Each proposition is either true or false.
The truth value of an atomic proposition, that is, either true or false depends on an interpretation of such propositions.

For example, $1+1=10$ is false, if we interpret sequences of digits as the decimal notation for numbers and true if we use the binary notation.

Truth

Each proposition is either true or false.
The truth value of an atomic proposition, that is, either true or false depends on an interpretation of such propositions.

For example, $1+1=10$ is false, if we interpret sequences of digits as the decimal notation for numbers and true if we use the binary notation.

If a complex proposition C is build from simpler propositional S_{1}, \ldots, S_{n} using a construct, then the truth value of C is determined by the truth value of S_{1}, \ldots, S_{n}. More precisely, it is a function of truth values of S_{1}, \ldots, S_{n} defined by this construct.

Truth

Each proposition is either true or false.
The truth value of an atomic proposition, that is, either true or false depends on an interpretation of such propositions.

For example, $1+1=10$ is false, if we interpret sequences of digits as the decimal notation for numbers and true if we use the binary notation.

If a complex proposition C is build from simpler propositional
S_{1}, \ldots, S_{n} using a construct, then the truth value of C is determined by the truth value of S_{1}, \ldots, S_{n}. More precisely, it is a function of truth values of S_{1}, \ldots, S_{n} defined by this construct.
For example, $1+1=10$ or $1+1 \neq 10$ is true if $1+1 \neq 10$ is true.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.
- If A is a formula, then $(\neg A)$ is a formula.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.
- If A is a formula, then $(\neg A)$ is a formula.
- If A and B are formulas, then $(A \rightarrow B)$ and $(A \leftrightarrow B)$ are formulas.

Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

- Every boolean variable is a formula, also called atomic formula, or simply atom.
- T and \perp are formulas.
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$ are formulas.
- If A is a formula, then $(\neg A)$ is a formula.
- If A and B are formulas, then $(A \rightarrow B)$ and $(A \leftrightarrow B)$ are formulas.

The symbols $T, \perp, \wedge, \vee, \neg, \rightarrow, \leftrightarrow$ are called connectives.

Subformula

- Formulas A_{1}, \ldots, A_{n} are the immediate subformulas of $\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ and $\left(A_{1} \vee \ldots \vee A_{n}\right)$.
- Formula A is the immediate subformula of $(\neg A)$.
- Formulas A and B are the immediate subformulas of $(A \rightarrow B)$ and $(A \leftrightarrow B)$.
- Every formula A is a subformula of itself.
- If A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Parsing Formulas

We want to avoid expressions cluttered with parentheses. The standard way to avoid them is to assign precedence to operators and use the precedence to disambiguate expressions.

Parsing Formulas

We want to avoid expressions cluttered with parentheses. The standard way to avoid them is to assign precedence to operators and use the precedence to disambiguate expressions.
For example, in arithmetic we know that the expression

$$
x \cdot y+2 \cdot z
$$

is equivalent to

$$
(x \cdot y)+(2 \cdot z)
$$

since \cdot has a higher precedence than + .

Connectives and Their Precedences

Connective	Name	Precedence
\top	verum	
\perp	falsum	
\neg	negation	5
\wedge	conjunction	4
\vee	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

Parsing Formulas

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1
\leftrightarrow	

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Connective	Precedence
\top	
\perp	5
\neg	4
\wedge	3
\vee	2
\rightarrow	1
\leftrightarrow	

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Inside-out (starting with the highest precedence connectives):

$$
(\neg A) \wedge B \rightarrow C \vee D \quad \leftrightarrow E .
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Inside-out (starting with the highest precedence connectives):

$$
((\neg A) \wedge B) \rightarrow(C \vee D) \leftrightarrow E
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Inside-out (starting with the highest precedence connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Outside-in (starting with the lowest precedence connectives):

$$
\neg A \wedge B \rightarrow C \vee D \quad \leftrightarrow E
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Outside-in (starting with the lowest precedence connectives):

$$
(\neg A \wedge B \rightarrow C \vee D) \leftrightarrow E
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Outside-in (starting with the lowest precedence connectives):

$$
((\neg A \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Outside-in (starting with the lowest precedence connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E .
$$

Inside-out (starting with the highest precedence connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Outside-in (starting with the lowest precedence connectives):

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E .
$$

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.
Take a mapping from variables to (integer) values, for example

$$
\{x \mapsto 1, y \mapsto 7, z \mapsto-3\}
$$

Semantics, Interpretation

Consider an arithmetical expression, for example

$$
x \cdot y+2 \cdot z
$$

In arithmetic the meaning of expressions with variables is defined as follows.
Take a mapping from variables to (integer) values, for example

$$
\{x \mapsto 1, y \mapsto 7, z \mapsto-3\}
$$

Then, under this mapping the expression has the value 1. In other words, when we interpret variables as values, we can compute the value of any expression built using these variables.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning values to variables.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning values to variables.

- There are two boolean values, also called truth values: true (denoted 1) and false (denoted 0).

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning values to variables.

- There are two boolean values, also called truth values: true (denoted 1) and false (denoted 0).
- An interpretation for a set P of boolean variables is a mapping $I: P \rightarrow\{1,0\}$.

Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by assigning values to variables.

- There are two boolean values, also called truth values: true (denoted 1) and false (denoted 0).
- An interpretation for a set P of boolean variables is a mapping $I: P \rightarrow\{1,0\}$.
- Interpretations are also called truth assignments.

Interpreting Formulas

The truth value of a complex formula is determined by the truth values of its components.

Interpreting Formulas

The truth value of a complex formula is determined by the truth values of its components.
Given an interpretation I, extend / to a mapping from all formulas to truth values as follows.

1. $I(\top)=1$ and $I(\perp)=0$.
2. $I\left(A_{1} \wedge \ldots \wedge A_{n}\right)=1$ if and only if $I\left(A_{i}\right)=1$ for all i.
3. $I\left(A_{1} \vee \ldots \vee A_{n}\right)=1$ if and only if $I\left(A_{i}\right)=1$ for some i.
4. $I(\neg A)=1$ if and only if $I(A)=0$.
5. $I\left(A_{1} \rightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=0$ or $I\left(A_{2}\right)=1$.
6. $I\left(A_{1} \leftrightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=I\left(A_{2}\right)$.

Operation Tables

$$
I\left(A_{1} \vee A_{2}\right)=1 \text { if and only if } I\left(A_{1}\right)=1 \text { or } I\left(A_{2}\right)=1 .
$$

$$
\begin{array}{c|cc}
\vee & 1 & 0 \\
\hline 1 & 1 & 1 \\
0 & 1 & 0
\end{array}
$$

Operation Tables

$$
I\left(A_{1} \leftrightarrow A_{2}\right)=1 \text { if and only if } I\left(A_{1}\right)=I\left(A_{2}\right) .
$$

$$
\begin{array}{c|cc}
\leftrightarrow & 1 & 0 \\
\hline 1 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$

Operation Tables

Operation Tables

$I\left(A_{1} \vee A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=1$ or $I\left(A_{2}\right)=1$. $I\left(A_{1} \leftrightarrow A_{2}\right)=1$ if and only if $I\left(A_{1}\right)=I\left(A_{2}\right)$.

Therefore, every connective can be considered as a function on truth values.

Satisfiability, Validity, Equivalence

Let A be a formula.

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that l is a model of A, denoted by $I \models A$.

Satisfiability, Validity, Equivalence

Let A be a formula.

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that l is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.

Satisfiability, Validity, Equivalence

Let A be a formula.

- If $I(A)=1$, then we say that the formula A is true in I and that I satisfies A and that l is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.
- A is satisfiable if it is true in some interpretation.
- A is valid (or a tautology) if it is true in every interpretation.

Satisfiability, Validity, Equivalence

Let A be a formula.

- If $I(A)=1$, then we say that the formula A is true in $/$ and that I satisfies A and that l is a model of A, denoted by $I \models A$.
- If $I(A)=0$, then we say that the formula A is false in I.
- A is satisfiable if it is true in some interpretation.
- A is valid (or a tautology) if it is true in every interpretation.
- Two formulas A and B are called equivalent, denoted by $A \equiv B$ if they have the same models.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable for all formulas A.

Examples

$A \rightarrow A$ and $A \vee \neg A$ are valid for all formulas A.
Evidently, every valid formula is also satisfiable.
$A \wedge \neg A$ is unsatisfiable for all formulas A.
Formula p, where p is a boolean variable, is satisfiable but not valid.

Examples: Equivalences

For all formulas A and B, the following equivalences hold.

$$
\begin{align*}
A \rightarrow \perp & \equiv \neg A ; \tag{1}\\
\top \rightarrow A & \equiv A ; \tag{2}\\
A \rightarrow B & \equiv \neg(A \wedge \neg B) ; \tag{3}\\
A \wedge B & \equiv \neg(\neg A \vee \neg B) ; \tag{4}\\
A \vee B & \equiv \neg A \rightarrow B . \tag{5}
\end{align*}
$$

Connections Between These Notions

1. A formula A is valid if and only if $\neg A$ is unsatisfiable.
2. A formula A is satisfiable if and only if $\neg A$ is not valid.

Connections Between These Notions

3. A formula A is valid if and only if A is equivalent to T.
4. Formulas A and B are equivalent if and only if the formula $A \leftrightarrow B$ is valid.

Connections Between These Notions

5. Formulas A and B are equivalent if and only if the formula $\neg(A \leftrightarrow B)$ is unsatisfiable.
6. A formula A is satisfiable if and only if A is not equivalent to \perp.

Connections Between These Notions

1. A formula A is valid if and only if $\neg A$ is unsatisfiable.
2. A formula A is satisfiable if and only if $\neg A$ is not valid.
3. A formula A is valid if and only if A is equivalent to T.
4. Formulas A and B are equivalent if and only if the formula $A \leftrightarrow B$ is valid.
5. Formulas A and B are equivalent if and only if the formula $\neg(A \leftrightarrow B)$ is unsatisfiable.
6. A formula A is satisfiable if and only if A is not equivalent to \perp.

How to Evaluate a Formula?

Let's evaluate the formula

$$
(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

Evaluating a Formula

Evaluating a Formula

Evaluating a Formula

$$
\begin{array}{c|c}
\text { formula } & \text { value } \\
\hline(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r) & \\
(p \rightarrow q) \wedge(p \wedge q \rightarrow r) & p \rightarrow r \\
& p \wedge q \rightarrow r \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{array}
$$

Evaluating a Formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$\left.\begin{array}{rl} (p \rightarrow q) \wedge(p & \wedge q \end{array} \rightarrow r\right)$	
$p \rightarrow q$	
p	1
q	0

Evaluating a Formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	
p	1
q	0
r	1

Evaluating a Formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	
$p \quad p$	1
$q \quad q$	0
r	1

Evaluating a Formula

So the formula is true in this interpretation.

End of Lecture 2

Slides for lecture 2 end here ...

Equivalent replacement

Lemma (Equivalent Replacement)
Let A_{1} be a subformula of B_{1} and $I \models A_{1} \leftrightarrow A_{2}$. Suppose that B_{2} is obtained from B_{1} by replacing one or more occurrences or A_{1} by A_{2}. Then $I \models B_{1} \leftrightarrow B_{2}$.

Equivalent replacement

Lemma (Equivalent Replacement)

Let A_{1} be a subformula of B_{1} and $I \models A_{1} \leftrightarrow A_{2}$. Suppose that B_{2} is obtained from B_{1} by replacing one or more occurrences or A_{1} by A_{2}. Then $I=B_{1} \leftrightarrow B_{2}$.

Theorem (Equivalent Replacement)
Let A_{1} be a subformula of B_{1} and $A_{1} \equiv A_{2}$. Suppose that B_{2} is obtained from B_{1} by replacing one or more occurrences or A_{1} by A_{2}. Then $B_{1} \equiv B_{2}$.
In other words, replacing, in a formula B_{1}, a subformula A_{1} by an equivalent formula A_{2} gives an equivalent formula.

Equivalent replacement

Lemma (Equivalent Replacement)

Let A_{1} be a subformula of B_{1} and $I \models A_{1} \leftrightarrow A_{2}$. Suppose that B_{2} is obtained from B_{1} by replacing one or more occurrences or A_{1} by A_{2}. Then $I \models B_{1} \leftrightarrow B_{2}$.

Theorem (Equivalent Replacement)
Let A_{1} be a subformula of B_{1} and $A_{1} \equiv A_{2}$. Suppose that B_{2} is obtained from B_{1} by replacing one or more occurrences or A_{1} by A_{2}. Then $B_{1} \equiv B_{2}$.
In other words, replacing, in a formula B_{1}, a subformula A_{1} by an equivalent formula A_{2} gives an equivalent formula.
(thanks to compositionality!)

A purely syntactic algorithm

If $/ \vDash p$, then $/ \vDash p \leftrightarrow T$;
If $I \notin p$, then $I=p \leftrightarrow \perp$;

A purely syntactic algorithm

If $I=p$, then $I \vDash p \leftrightarrow T$;
If $I \not \vDash p$, then $I \vDash p \leftrightarrow \perp$;
Since we can replace a subformula by a formula with the same value, we can replace every variable p by either \top or \perp, depending on the value of p in I.

Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of \perp and T. One can note that every formula of this form different from \perp and T can be "simplified" to a smaller equivalent formula.

Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of \perp and T. One can note that every formula of this form different from \perp and T can be "simplified" to a smaller equivalent formula. For example, every formula of the form $A \rightarrow T$ is equivalent to a simpler formula T.

Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of \perp and T. One can note that every formula of this form different from \perp and T can be "simplified" to a smaller equivalent formula.
For example, every formula of the form $A \rightarrow T$ is equivalent to a simpler formula T.
This simplification process can be formalised as a rewrite rule system:

$$
\begin{gathered}
\top \wedge \ldots \wedge \top \Rightarrow \top \\
\perp \wedge A_{1} \wedge \ldots \wedge A_{n} \Rightarrow \perp
\end{gathered}
$$

$$
\begin{gathered}
A_{1} \vee \ldots \vee \top \vee \ldots \vee A_{n} \Rightarrow \top \\
\perp \vee \ldots \vee \perp \Rightarrow \perp
\end{gathered}
$$

$$
\begin{aligned}
& \neg \top \Rightarrow \perp \\
& \neg \perp \Rightarrow \top
\end{aligned}
$$

$$
\begin{aligned}
& A \rightarrow \top \Rightarrow \top \\
& \perp \rightarrow A \Rightarrow \top \\
& \top \rightarrow \perp \Rightarrow \perp \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \top \leftrightarrow \top \Rightarrow \top \\
& \top \leftrightarrow \perp \Rightarrow \perp \\
& \perp \leftrightarrow \top \Rightarrow \perp \\
& \perp \leftrightarrow \perp \Rightarrow \top
\end{aligned}
$$

Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula using the rewrite rule system.

```
procedure evaluate(G, I)
input: formula G, interpretation /
output: the boolean value I(G)
```


Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula using the rewrite rule system.

```
procedure evaluate(G, I)
input: formula G, interpretation /
output: the boolean value I(G)
begin
    forall variables p occurring in G
    if I}=
    then replace all occurrences of p in G by T;
    else replace all occurrences of p in G by }\perp\mathrm{ ;
end
```


Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula using the rewrite rule system.

```
procedure evaluate(G, I)
input: formula G, interpretation /
output: the boolean value I(G)
begin
    forall variables p occurring in G
        if }|=
        then replace all occurrences of p in G by T;
        else replace all occurrences of p in G by }\perp\mathrm{ ;
    rewrite G into a normal form using the rewrite rules
end
```


Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula using the rewrite rule system.

```
procedure evaluate(G, I)
input: formula G, interpretation /
output: the boolean value I(G)
begin
    forall variables p occurring in G
        if I}=
        then replace all occurrences of p in G by T;
        else replace all occurrences of p in G by }\perp\mathrm{ ;
    rewrite G into a normal form using the rewrite rules
    if G=T then return 1 else return 0
end
```


Example

Let us evaluate the formula

$$
(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

Example

Let us evaluate the formula

$$
(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

The value of this formula is equal to the value of

$$
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) .
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{aligned}
(T & \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
& \perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{aligned}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{aligned}
(T & \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
& \perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{aligned}
$$

$$
A \wedge \perp \Rightarrow \perp
$$

$$
\top \rightarrow \perp \Rightarrow \perp
$$

$$
A \rightarrow \top \Rightarrow \top
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\quad \perp \wedge T \rightarrow(T \rightarrow T)
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\quad \perp \wedge T \rightarrow(T \rightarrow T)
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top)
\end{gathered}
$$

$$
A \wedge \perp \Rightarrow \perp
$$

$$
\top \rightarrow \perp \Rightarrow \perp
$$

$$
A \rightarrow \top \Rightarrow \top
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top)
\end{gathered}
$$

$$
A \wedge \perp \Rightarrow \perp
$$

$$
\top \rightarrow \perp \Rightarrow \perp
$$

$$
A \rightarrow \top \Rightarrow \top
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow T
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow T
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow \top) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge T \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \rightarrow T \Rightarrow \\
T
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Apply rewrite rules

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Outside-in, right-to-left:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

Apply rewrite rules

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Outside-in, right-to-left:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

Apply rewrite rules

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Outside-in, right-to-left:

$$
\begin{aligned}
& (T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \\
& (T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow T
\end{aligned}
$$

Apply rewrite rules

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Outside-in, right-to-left:

$$
\begin{aligned}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \\
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow T
\end{aligned}
$$

Apply rewrite rules

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

Outside-in, right-to-left:

$$
\begin{aligned}
& (T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
& (\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow \top \Rightarrow
\end{aligned}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge T \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \rightarrow T \Rightarrow \\
T
\end{gathered}
$$

Outside-in, right-to-left:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow \top) \Rightarrow \\
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow T \Rightarrow \\
\top
\end{gathered}
$$

$$
\begin{aligned}
& A \wedge \perp \Rightarrow \perp \\
& \top \rightarrow \perp \Rightarrow \perp \\
& A \rightarrow \top \Rightarrow \top
\end{aligned}
$$

