
Outline

Propositional Logic
Ideas
Syntax
Semantics
Formula Evaluation



Proposition

Propositional Logic formalises the notion of proposition, that is a
statement that can be either true or false.

There are simple propositions, called atomic. For example:

1. 0 < 1;
2. Alan Turing was born in Manchester;
3. 1 + 1 = 10.

More complex propositions are built from simpler ones using a small
number of constructs. Examples of more complex propositions:

1. If 0 < 1, then Alan Turing was born in Manchester;
2. 1 + 1 = 10 or 1 + 1 6= 10.



Proposition

Propositional Logic formalises the notion of proposition, that is a
statement that can be either true or false.

There are simple propositions, called atomic. For example:

1. 0 < 1;
2. Alan Turing was born in Manchester;
3. 1 + 1 = 10.

More complex propositions are built from simpler ones using a small
number of constructs. Examples of more complex propositions:

1. If 0 < 1, then Alan Turing was born in Manchester;
2. 1 + 1 = 10 or 1 + 1 6= 10.



Proposition

Propositional Logic formalises the notion of proposition, that is a
statement that can be either true or false.

There are simple propositions, called atomic. For example:

1. 0 < 1;
2. Alan Turing was born in Manchester;
3. 1 + 1 = 10.

More complex propositions are built from simpler ones using a small
number of constructs. Examples of more complex propositions:

1. If 0 < 1, then Alan Turing was born in Manchester;
2. 1 + 1 = 10 or 1 + 1 6= 10.



Truth

Each proposition is either true or false.

The truth value of an atomic proposition, that is, either true or false
depends on an interpretation of such propositions.

For example, 1 + 1 = 10 is false, if we interpret sequences of digits
as the decimal notation for numbers and true if we use the binary
notation.

If a complex proposition C is build from simpler propositional
S1, . . . ,Sn using a construct, then the truth value of C is determined
by the truth value of S1, . . . ,Sn. More precisely, it is a function of truth
values of S1, . . . ,Sn defined by this construct.

For example, 1 + 1 = 10 or 1 + 1 6= 10 is true if 1 + 1 6= 10 is true.



Truth

Each proposition is either true or false.

The truth value of an atomic proposition, that is, either true or false
depends on an interpretation of such propositions.

For example, 1 + 1 = 10 is false, if we interpret sequences of digits
as the decimal notation for numbers and true if we use the binary
notation.

If a complex proposition C is build from simpler propositional
S1, . . . ,Sn using a construct, then the truth value of C is determined
by the truth value of S1, . . . ,Sn. More precisely, it is a function of truth
values of S1, . . . ,Sn defined by this construct.

For example, 1 + 1 = 10 or 1 + 1 6= 10 is true if 1 + 1 6= 10 is true.



Truth

Each proposition is either true or false.

The truth value of an atomic proposition, that is, either true or false
depends on an interpretation of such propositions.

For example, 1 + 1 = 10 is false, if we interpret sequences of digits
as the decimal notation for numbers and true if we use the binary
notation.

If a complex proposition C is build from simpler propositional
S1, . . . ,Sn using a construct, then the truth value of C is determined
by the truth value of S1, . . . ,Sn. More precisely, it is a function of truth
values of S1, . . . ,Sn defined by this construct.

For example, 1 + 1 = 10 or 1 + 1 6= 10 is true if 1 + 1 6= 10 is true.



Truth

Each proposition is either true or false.

The truth value of an atomic proposition, that is, either true or false
depends on an interpretation of such propositions.

For example, 1 + 1 = 10 is false, if we interpret sequences of digits
as the decimal notation for numbers and true if we use the binary
notation.

If a complex proposition C is build from simpler propositional
S1, . . . ,Sn using a construct, then the truth value of C is determined
by the truth value of S1, . . . ,Sn. More precisely, it is a function of truth
values of S1, . . . ,Sn defined by this construct.

For example, 1 + 1 = 10 or 1 + 1 6= 10 is true if 1 + 1 6= 10 is true.



Truth

Each proposition is either true or false.

The truth value of an atomic proposition, that is, either true or false
depends on an interpretation of such propositions.

For example, 1 + 1 = 10 is false, if we interpret sequences of digits
as the decimal notation for numbers and true if we use the binary
notation.

If a complex proposition C is build from simpler propositional
S1, . . . ,Sn using a construct, then the truth value of C is determined
by the truth value of S1, . . . ,Sn. More precisely, it is a function of truth
values of S1, . . . ,Sn defined by this construct.

For example, 1 + 1 = 10 or 1 + 1 6= 10 is true if 1 + 1 6= 10 is true.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.

I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and
(A1 ∨ . . . ∨ An) are formulas.

I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.

I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.

I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Propositional Logic: Syntax

Assume a countable set of boolean variables.
Propositional formula:

I Every boolean variable is a formula, also called atomic formula,
or simply atom.

I > and ⊥ are formulas.
I If A1, . . . ,An are formulas, where n ≥ 2, then (A1 ∧ . . . ∧ An) and

(A1 ∨ . . . ∨ An) are formulas.
I If A is a formula, then (¬A) is a formula.
I If A and B are formulas, then (A→ B) and (A↔ B) are formulas.

The symbols >,⊥,∧,∨,¬,→,↔ are called connectives.



Subformula

I Formulas A1, . . . ,An are the immediate subformulas of
(A1 ∧ . . . ∧ An) and (A1 ∨ . . . ∨ An).

I Formula A is the immediate subformula of (¬A).
I Formulas A and B are the immediate subformulas of (A→ B)

and (A↔ B).
I Every formula A is a subformula of itself.
I If A is a subformula of B and B is a subformula of C, then A is a

subformula of C.



Parsing Formulas

We want to avoid expressions cluttered with parentheses. The
standard way to avoid them is to assign precedence to operators and
use the precedence to disambiguate expressions.

For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher precedence than +.



Parsing Formulas

We want to avoid expressions cluttered with parentheses. The
standard way to avoid them is to assign precedence to operators and
use the precedence to disambiguate expressions.
For example, in arithmetic we know that the expression

x · y + 2 · z

is equivalent to

(x · y) + (2 · z),

since · has a higher precedence than +.



Connectives and Their Precedences

Connective Name Precedence
> verum
⊥ falsum
¬ negation 5
∧ conjunction 4
∨ disjunction 3
→ implication 2
↔ equivalence 1



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

((

(¬A) ∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(

((¬A) ∧ B)→ (C ∨ D)

)

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(

((

¬A

)

∧ B

)

→

(

C ∨ D

)

)↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

((

(

¬A

)

∧ B)→ (C ∨ D))↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((

¬A

)

∧ B

)

→

(

C ∨ D

))

↔ E .

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .



Parsing Formulas

Let us parse

¬A ∧ B → C ∨ D ↔ E .

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E .



Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.

Take a mapping from variables to (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of any expression built using these variables.



Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables to (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of any expression built using these variables.



Semantics, Interpretation

Consider an arithmetical expression, for example

x · y + 2 · z.

In arithmetic the meaning of expressions with variables is defined as
follows.
Take a mapping from variables to (integer) values, for example

{x 7→ 1, y 7→ 7, z 7→ −3}.

Then, under this mapping the expression has the value 1. In other
words, when we interpret variables as values, we can compute the
value of any expression built using these variables.



Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning values to variables.

I There are two boolean values, also called truth values: true
(denoted 1) and false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.



Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning values to variables.

I There are two boolean values, also called truth values: true
(denoted 1) and false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.



Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning values to variables.

I There are two boolean values, also called truth values: true
(denoted 1) and false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.



Semantics, Interpretation

Likewise, the semantics of propositional formulas can be defined by
assigning values to variables.

I There are two boolean values, also called truth values: true
(denoted 1) and false (denoted 0).

I An interpretation for a set P of boolean variables is a mapping
I : P → {1,0}.

I Interpretations are also called truth assignments.



Interpreting Formulas

The truth value of a complex formula is determined by the truth
values of its components.

Given an interpretation I, extend I to a mapping from all formulas to
truth values as follows.

1. I(>) = 1 and I(⊥) = 0.
2. I(A1 ∧ . . . ∧ An) = 1 if and only if I(Ai) = 1 for all i .
3. I(A1 ∨ . . . ∨ An) = 1 if and only if I(Ai) = 1 for some i .
4. I(¬A) = 1 if and only if I(A) = 0.
5. I(A1 → A2) = 1 if and only if I(A1) = 0 or I(A2) = 1.
6. I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).



Interpreting Formulas

The truth value of a complex formula is determined by the truth
values of its components.
Given an interpretation I, extend I to a mapping from all formulas to
truth values as follows.

1. I(>) = 1 and I(⊥) = 0.
2. I(A1 ∧ . . . ∧ An) = 1 if and only if I(Ai) = 1 for all i .
3. I(A1 ∨ . . . ∨ An) = 1 if and only if I(Ai) = 1 for some i .
4. I(¬A) = 1 if and only if I(A) = 0.
5. I(A1 → A2) = 1 if and only if I(A1) = 0 or I(A2) = 1.
6. I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).



Operation Tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.

I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.



Operation Tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.

I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.



Operation Tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.



Operation Tables

I(A1 ∨ A2) = 1 if and only if I(A1) = 1 or I(A2) = 1.
I(A1 ↔ A2) = 1 if and only if I(A1) = I(A2).

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values.



Satisfiability, Validity, Equivalence

Let A be a formula.

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable if it is true in some interpretation.
I A is valid (or a tautology) if it is true in every interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.



Satisfiability, Validity, Equivalence

Let A be a formula.

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.

I A is satisfiable if it is true in some interpretation.
I A is valid (or a tautology) if it is true in every interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.



Satisfiability, Validity, Equivalence

Let A be a formula.

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable if it is true in some interpretation.
I A is valid (or a tautology) if it is true in every interpretation.

I Two formulas A and B are called equivalent, denoted by A ≡ B if
they have the same models.



Satisfiability, Validity, Equivalence

Let A be a formula.

I If I(A) = 1, then we say that the formula A is true in I and that I
satisfies A and that I is a model of A, denoted by I |= A.

I If I(A) = 0, then we say that the formula A is false in I.
I A is satisfiable if it is true in some interpretation.
I A is valid (or a tautology) if it is true in every interpretation.
I Two formulas A and B are called equivalent, denoted by A ≡ B if

they have the same models.



Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable for all formulas A.

Formula p, where p is a boolean variable, is satisfiable but not valid.



Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable for all formulas A.

Formula p, where p is a boolean variable, is satisfiable but not valid.



Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable for all formulas A.

Formula p, where p is a boolean variable, is satisfiable but not valid.



Examples

A→ A and A ∨ ¬A are valid for all formulas A.

Evidently, every valid formula is also satisfiable.

A ∧ ¬A is unsatisfiable for all formulas A.

Formula p, where p is a boolean variable, is satisfiable but not valid.



Examples: Equivalences

For all formulas A and B, the following equivalences hold.

A→ ⊥ ≡ ¬A; (1)
> → A ≡ A; (2)
A→ B ≡ ¬(A ∧ ¬B); (3)
A ∧ B ≡ ¬(¬A ∨ ¬B); (4)
A ∨ B ≡ ¬A→ B. (5)



Connections Between These Notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.

3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

5. Formulas A and B are equivalent if and only if the formula
¬(A↔ B) is unsatisfiable.

6. A formula A is satisfiable if and only if A is not equivalent to ⊥.



Connections Between These Notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.

3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

5. Formulas A and B are equivalent if and only if the formula
¬(A↔ B) is unsatisfiable.

6. A formula A is satisfiable if and only if A is not equivalent to ⊥.



Connections Between These Notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.

3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

5. Formulas A and B are equivalent if and only if the formula
¬(A↔ B) is unsatisfiable.

6. A formula A is satisfiable if and only if A is not equivalent to ⊥.



Connections Between These Notions

1. A formula A is valid if and only if ¬A is unsatisfiable.
2. A formula A is satisfiable if and only if ¬A is not valid.

3. A formula A is valid if and only if A is equivalent to >.
4. Formulas A and B are equivalent if and only if the formula A↔ B

is valid.

5. Formulas A and B are equivalent if and only if the formula
¬(A↔ B) is unsatisfiable.

6. A formula A is satisfiable if and only if A is not equivalent to ⊥.



How to Evaluate a Formula?

Let’s evaluate the formula

(p → q) ∧ (p ∧ q → r)→ (p → r)

in the interpretation

{p 7→ 1,q 7→ 0, r 7→ 1}.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1
p → r 1

(p → q) ∧ (p ∧ q → r) 0
p ∧ q → r 1

p → q 0
p ∧ q 0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0
p ∧ q → r 1

p → q 0
p ∧ q 0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0
p ∧ q 0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0
p ∧ q 0

p

p p

1
q

q

0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0

p ∧ q

0

p

p p

1
q

q

0
r

r

1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0

p ∧ q

0

p p

p

1
q q 0

r

r

1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0

p ∧ q

0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q

0

p ∧ q 0
p p p 1

q q 0
r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r

1

p → q 0
p ∧ q 0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r)

0

p ∧ q → r 1
p → q 0

p ∧ q 0
p p p 1

q q 0
r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r

1

(p → q) ∧ (p ∧ q → r) 0
p ∧ q → r 1

p → q 0
p ∧ q 0

p p p 1
q q 0

r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r)

1

p → r 1
(p → q) ∧ (p ∧ q → r) 0

p ∧ q → r 1
p → q 0

p ∧ q 0
p p p 1

q q 0
r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



Evaluating a Formula

formula value
(p → q) ∧ (p ∧ q → r)→ (p → r) 1

p → r 1
(p → q) ∧ (p ∧ q → r) 0

p ∧ q → r 1
p → q 0

p ∧ q 0
p p p 1

q q 0
r r 1

{p 7→ 1,q 7→ 0, r 7→ 1}

So the formula is true in this interpretation.



End of Lecture 2

Slides for lecture 2 end here . . .



Equivalent replacement

Lemma (Equivalent Replacement)
Let A1 be a subformula of B1 and I |= A1 ↔ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then I |= B1 ↔ B2.

Theorem (Equivalent Replacement)
Let A1 be a subformula of B1 and A1 ≡ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then B1 ≡ B2.
In other words, replacing, in a formula B1, a subformula A1 by an
equivalent formula A2 gives an equivalent formula.

(thanks to compositionality!)



Equivalent replacement

Lemma (Equivalent Replacement)
Let A1 be a subformula of B1 and I |= A1 ↔ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then I |= B1 ↔ B2.

Theorem (Equivalent Replacement)
Let A1 be a subformula of B1 and A1 ≡ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then B1 ≡ B2.
In other words, replacing, in a formula B1, a subformula A1 by an
equivalent formula A2 gives an equivalent formula.

(thanks to compositionality!)



Equivalent replacement

Lemma (Equivalent Replacement)
Let A1 be a subformula of B1 and I |= A1 ↔ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then I |= B1 ↔ B2.

Theorem (Equivalent Replacement)
Let A1 be a subformula of B1 and A1 ≡ A2. Suppose that B2 is
obtained from B1 by replacing one or more occurrences or A1 by A2.
Then B1 ≡ B2.
In other words, replacing, in a formula B1, a subformula A1 by an
equivalent formula A2 gives an equivalent formula.

(thanks to compositionality!)



A purely syntactic algorithm

If I |= p, then I |= p ↔ >;
If I 6|= p, then I |= p ↔ ⊥;

Since we can replace a subformula by a formula with the same value,
we can replace every variable p by either > or ⊥, depending on the
value of p in I.



A purely syntactic algorithm

If I |= p, then I |= p ↔ >;
If I 6|= p, then I |= p ↔ ⊥;

Since we can replace a subformula by a formula with the same value,
we can replace every variable p by either > or ⊥, depending on the
value of p in I.



Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of ⊥ and >.
One can note that every formula of this form different from ⊥ and >
can be “simplified” to a smaller equivalent formula.

For example, every formula of the form A→ > is equivalent to a
simpler formula >.
This simplification process can be formalised as a rewrite rule system:

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

A1 ∨ . . . ∨ > ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >



Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of ⊥ and >.
One can note that every formula of this form different from ⊥ and >
can be “simplified” to a smaller equivalent formula.
For example, every formula of the form A→ > is equivalent to a
simpler formula >.

This simplification process can be formalised as a rewrite rule system:

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

A1 ∨ . . . ∨ > ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >



Rewrite rules for evaluating a formula

Suppose that we have a formula consisting only of ⊥ and >.
One can note that every formula of this form different from ⊥ and >
can be “simplified” to a smaller equivalent formula.
For example, every formula of the form A→ > is equivalent to a
simpler formula >.
This simplification process can be formalised as a rewrite rule system:

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

A1 ∨ . . . ∨ > ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >



Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula
using the rewrite rule system.

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)

begin
forall variables p occurring in G

if I |= p
then replace all occurrences of p in G by >;
else replace all occurrences of p in G by ⊥;

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0

end



Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula
using the rewrite rule system.

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin

forall variables p occurring in G
if I |= p

then replace all occurrences of p in G by >;
else replace all occurrences of p in G by ⊥;

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0

end



Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula
using the rewrite rule system.

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin

forall variables p occurring in G
if I |= p

then replace all occurrences of p in G by >;
else replace all occurrences of p in G by ⊥;

rewrite G into a normal form using the rewrite rules

if G = > then return 1 else return 0

end



Algorithm for evaluating a formula

We can define a purely syntax algorithm for evaluating a formula
using the rewrite rule system.

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin

forall variables p occurring in G
if I |= p

then replace all occurrences of p in G by >;
else replace all occurrences of p in G by ⊥;

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0

end



Example

Let us evaluate the formula

(p → q) ∧ (p ∧ q → r)→ (p → r)

in the interpretation

{p 7→ 1,q 7→ 0, r 7→ 1}.

The value of this formula is equal to the value of

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >).



Example

Let us evaluate the formula

(p → q) ∧ (p ∧ q → r)→ (p → r)

in the interpretation

{p 7→ 1,q 7→ 0, r 7→ 1}.

The value of this formula is equal to the value of

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >).



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)

⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)

⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)

⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)

⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)

⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)

⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)

⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)

⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >

⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >

⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >

⇒
>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >

⇒
>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites



Apply rewrite rules

Inside-out, left-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-left:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

A ∧ ⊥ ⇒ ⊥
> → ⊥ ⇒ ⊥
A → > ⇒ >

The result will always be the same independently of the order of
rewrites


	Propositional Logic
	Ideas
	Syntax
	Semantics
	Formula Evaluation


