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Two-Player Games

Who is this man?



Two-Player Games

Does Garry Kasparov have a winning
strategy?



Two-Player Games

Given a propositional formula G with variables p1,q1, . . . ,pn,qn.

There are two players: P and Q.
At step k each player makes a move:

1. the player P can choose a boolean value for the variable pk ;
2. the player Q can choose a boolean value for the variable qk .

The player P wins if after n steps the chosen values make the formula
G true.
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Suppose Both Players Make no Errors: Who Wins?

Consider several special cases

1. p1

2. p1 → q1

3. q1 → q1 If G is valid, P always wins!
4. p1 ∧ ¬p1 If G is unsatisfiable, Q always wins!
5. p1 ↔ q1
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Winning Strategy

Problem: does P have a winning strategy?

He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that

I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)

I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that

I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)

I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if

I there exists a move for P (a boolean value for for p1) such that
I for all moves of Q (boolean values for for q1)
I there exists a move for P (a boolean value for for p2) such that
I for all moves of Q (boolean values for for q2)
I . . .
I for all moves of Q (boolean values for for qn) the formula G

becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula ∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG.



Quantified Boolean Formulas

Propositional formula:

I Every boolean variable is a formula.
I > and ⊥ are formulas.
I If F1, . . . ,Fn are formulas, where n ≥ 2, then (F1 ∧ . . . ∧ Fn) and

(F1 ∨ . . . ∨ Fn) are formulas.
I If F is a formula, then ¬F is a formula.
I If F and G are formulas, then (F → G) and (F ↔ G) are

formulas.

Quantified boolean formulas:

I If p is a boolean variable and F is a formula, then ∀pF and ∃pF
are formulas.
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Quantifiers

I ∀ is called the universal quantifier.
I ∃ is called the existential quantifier.
I Read ∀pF as “for all p, F ”.
I Read ∃pF as “there exists p such that F ” or “for some p, F ”.



New Notation

Define

Ib
p (q)

def
=

{
I(q), if p 6= q;
b, if p = q.

Example: let I = {p 7→ 1,q 7→ 0, r 7→ 1}. Then

I1
q = {p 7→ 1,q 7→ 1, r 7→ 1}
I0
q = {p 7→ 1,q 7→ 0, r 7→ 1} = I
I0
p = {p 7→ 0,q 7→ 0, r 7→ 1}



Semantics

1. I(>) = 1 and I(⊥) = 0.
2. I(F1 ∧ . . . ∧ Fn) = 1 if and only if I(Fi) = 1 for all i .
3. I(F1 ∨ . . . ∨ Fn) = 1 if and only if I(Fi) = 1 for some i .
4. I(¬F ) = 1 if and only if I(F ) = 0.
5. I(F → G) = 1 if and only if I(F ) = 0 or I(G) = 1.
6. I(F ↔ G) = 1 if and only if I(F ) = I(G).

7. I(∀pF ) = 1 if and only if I0
p(F ) = 1 and I1

p(F ) = 1.

8. I(∃pF ) = 1 if and only if I0
p(F ) = 1 or I1

p(F ) = 1.
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Evaluating a Formula: and-or trees

Let us evaluate ∀p∃q(p ↔ q) on the interpretation {p 7→ 1,q 7→ 0}.

Denote any interpretation {p 7→ b1,q 7→ b2} by Ib1b2 .

I10 |= ∀p∃q(p ↔ q)

⇔ I00 |= ∃q(p ↔ q)
I10 |= ∃q(p ↔ q) and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and

I10 |= p ↔ q
I11 |= p ↔ q or
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Evaluating a formula

I10 |= ∀p∃q(p ↔ q)

∧

I00 |= ∃q(p ↔ q)

∨

I10 |= ∃q(p ↔ q)

∨

I00 |= p ↔ q I01 |= p ↔ q I10 |= p ↔ q I11 |= p ↔ q



Evaluating a formula

Denote any interpretation {p 7→ b1,q 7→ b2} by Ib1b2 . Use wildcards ∗
to denote “any” boolean value.

I∗∗ |= ∀p∃q(p ↔ q)

⇔ I0∗ |= ∃q(p ↔ q)
I1∗ |= ∃q(p ↔ q) and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

The variables p and q are bound by quantifiers ∀p and ∃q, so the
value of the formula does not depend on these variables.
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Subformula

Propositional formulas:

I The formulas F1, . . . ,Fn are the immediate subformulas of the
formulas F1 ∧ . . . ∧ Fn and F1 ∨ . . . ∨ Fn.

I The formulas F is the immediate subformula of the formula ¬F .
I The formulas F1,F2 are the immediate subformulas of the

formulas F1 → F2 and F1 ↔ F2.
I . . .

Quantified boolean formulas:

I The formula F1 is the immediate subformula of the formulas ∀pF1
and ∃pF1.
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Positions and Polarity

Let F |π = G.
Propositional formulas:

I If G has the form G1 ∧ . . . ∧Gn or G1 ∨ . . . ∨Gn, then for all
i ∈ {1, . . . ,n} the position π.i is a position in F and
pol(F , π.i) def

= pol(F , π).

I If G has the form ¬G1 , then π.1 is a position in F , F |π.1
def
= G1

and pol(F , π.1) def
= −pol(F , π).

I . . .

Quantified boolean formulas:

I If G has the form ∀pG1 or ∃pG1, then π.1 is a position in F ,
F |π.1

def
= G1 and pol(F , π.1) def

= pol(F , π).



Positions and Polarity

Let F |π = G.
Propositional formulas:

I If G has the form G1 ∧ . . . ∧Gn or G1 ∨ . . . ∨Gn, then for all
i ∈ {1, . . . ,n} the position π.i is a position in F and
pol(F , π.i) def

= pol(F , π).

I If G has the form ¬G1 , then π.1 is a position in F , F |π.1
def
= G1

and pol(F , π.1) def
= −pol(F , π).

I . . .

Quantified boolean formulas:

I If G has the form ∀pG1 or ∃pG1, then π.1 is a position in F ,
F |π.1

def
= G1 and pol(F , π.1) def

= pol(F , π).



Example

→ p → ∀q∃p(q ↔ p) ∨ r

p

1

∨

2

∀q

1

r

2

∃p
1

↔
1

q

1

p

2

F |2.1 = ∀q∃p(q ↔ p)

F |2.1.1.1.1 = q
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Free and bound occurrences of variables

Let p be a boolean variable and F |π = p.

I The occurrence of p at the position π in F is bound if π can be
represented as a concatenation of two strings π1π2 such that
F |π1 has the form ∀pG or ∃pG for some G.

In other words, a bound occurrence of p is an occurrence in the
scope of ∀p or ∃p.

I Free occurrence: not bound.
I Free (bound) variable of a formula: a variable with at least one

free (bound) occurrence.
I Closed formula: formula with no free variables.
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Example: Free and Bound Variables

→ p → ∀q∃p(q ↔ p) ∨ r

p
(free)

∨

∀q r
(free)

∃p

↔

q
(bound)

p
(bound)



Only Free Variables Matter

The truth value of a formula depends only on the truth values of free
variables of the formula:

Lemma
Let for all free variables p of a formula F we have I1(p) = I2(p). Then
I1 |= F if and only if I2 |= F.

Theorem
Let F be a closed formula and I1, I2 be interpretations. Then I1 |= F if
and only if I2 |= F.
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Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas.

There is no difference between these notions for closed formulas:

Lemma
For every interpretation I and closed formula F the following
propositions are equivalent: (i) I |= F; (ii) F is satisfiable; and (iii) F is
valid.

Validity and satisfiability can be expressed through truth:

Lemma
Let F be a formula with free variables p1, . . . ,pn.

I F is satisfiable if and only if the formula ∃p1 . . . ∃pnF is satisfiable
(true, valid).

I F is valid if and only if the formula ∀p1 . . . ∀pnF is valid (true,
satisfiable).
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More on free and bound occurrences

int symdiff(int i,int j)
{

return i > j ? i - j : j - i;
}

sum = i + symdiff(3,4);

free

bound

binding

Renaming bound variables does not change the semantics of the
program:
int symdiff(int k,int j)
{
return k > j ? k - j : j - k;

}

sum = i + symdiff(3,4);
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Substitutions for propositional formulas

Substitution: (F )G
p : denotes the formula obtained from F by replacing

all occurrences of the variable p by G.

Example:

((p ∨ s) ∧ (q → p))(l∧s)
p =

(((l ∧ s) ∨ s) ∧ (q → (l ∧ s)))

Properties: If we apply any substitution to a valid formula then we
also obtain a valid formula.
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Substitution for quantified formulas

Some problems...

Consider ∃q(¬p ↔ q).

We cannot simply replace variables by formulas any more:
∃(r → r)(¬p ↔ r → r) ???

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a
formula, e.g. (∀pp → q) ∧ (q ∨ (q → p))
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Renaming bound variables
Notation: ∀∃ : any of ∃, ∀ and ∨∧: any of ∧, ∨.

Renaming bound variables in F :
Let F [ ∀∃ pG ].

1. Take a fresh variable q (that is a variable not occurring in F );
2. Replace all free occurrences of p in G (note: not in F !) by q

obtaining G′.
3. So we obtain the F [ ∀∃ qG′ ] as the result.

Lemma
F [ ∀∃ pG ] ≡ F [ ∀∃ qG′ ]

Example:
∃q( ∀p((p → q) ∧ p) ) ∨ p.

Then we can rename p into r obtaining
∃q( ∀r((r → q) ∧ r) ) ∨ p.
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Rectified formulas

Rectified formula F :
I no variable appears both free and bound in F ;
I for every variable p, the formula F contains at most one

occurrence of quantifiers ∀∃ p.

Any formula can be transformed into a rectified formula by renaming
bound variables.

We can use the usual notation (F )G
p for rectified formulas assuming

that p occurs only free.
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Rectification: Example

p → ∃p(p ∧ ∀p(p ∨ r → ¬p) )

⇒

p → ∃p(p ∧ ∀p1(p1 ∨ r → ¬p1)) ⇒

p → ∃p2(p2 ∧ ∀p1(p1 ∨ r → ¬p1))

This formula is rectified and equivalent to the original one.
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Another problem

∃q(¬p ↔ q): there exists a truth value equal to the value of ¬p. This
formula is valid.

Rename p into q.

∃q(¬q ↔ q): there exists a truth value equivalent to its own negation.
This formula is unsatisfiable.
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Another restriction

Suppose we want to substitute (F )G
p .

Then we require: no free variable in G become bound in (F )G
p .

In previous example ∃q(¬p ↔ q):
Substitute p by q. (∃q(¬q ↔ q) does not satisfy above)

Uniform solution – renaming of bound variables
∃q(¬p ↔ q) ≡ ∃r(¬p ↔ r)
Now we can substitute p by q obtaining ∃r(¬q ↔ r)

From now on we always assume that:

I formulas are rectified.
I all substitutions satisfy the requirement above
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Equivalent replacement

Lemma
Let I be an interpretation and I |= F1 ↔ F2. Then I |= G[F1]↔ G[F2].

Theorem (Equivalent Replacement)
Let F1 ≡ F2. Then G[F1] ≡ G[F2].



Prenex form

I Quantifier-free formula: no quantifiers (that is, propositional).

I Prenex formula has the form ∀∃ 1p1 . . . ∀∃ npnG, where G is
quantifier-free.

I Outermost prefix of ∀∃ 1p1 . . . ∀∃ npnG: the longest subsequence
∀∃ 1p1 . . . ∀∃ k pk of ∀∃ 1p1 . . . ∀∃ npn such that ∀∃ 1 = . . . = ∀∃ k .

I A formula F is a prenex form of a formula G if F is prenex and
F ≡ G.
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Prenexing rules

Prenexing rules:

∀∃ pF1∨∧ . . .∨∧Fn ⇒ ∀∃ p(F1∨∧ . . .∨∧Fn)

∀pF1 → F2 ⇒ ∃p(F1 → F2) ∃pF1 → F2 ⇒ ∀p(F1 → F2)
F1 → ∀pF2 ⇒ ∀p(F1 → F2) F1 → ∃pF2 ⇒ ∃p(F1 → F2)

¬∀pF ⇒ ∃p¬F ¬∃pF ⇒ ∀p¬F



Prenexing. Example I

∃q(q → p)→ ¬∀r(r → p) ∨ p ⇒
∀q((q → p)→ ¬∀r(r → p) ∨ p)⇒
∀q((q → p)→ ∃r¬(r → p) ∨ p)⇒
∀q((q → p)→ ∃r(¬(r → p) ∨ p))⇒
∀q∃r((q → p)→ ¬(r → p) ∨ p).



Prenexing. Example II

∃q(q → p)→ ¬∀r(r → p) ∨ p ⇒
∃q(q → p)→ ∃r¬(r → p) ∨ p ⇒
∃q(q → p)→ ∃r(¬(r → p) ∨ p)⇒
∃r(∃q(q → p)→ ¬(r → p) ∨ p)⇒
∃r∀q((q → p)→ ¬(r → p) ∨ p).



What’s next

Algorithms for satisfiability, validity of QBF:

I Splitting
I DPLL

Reminder:
(i) F (p1, . . . ,pn) is satisfiable iff ∃p1 . . . ∃pnF (p1, . . . ,pn) is
true/satisfiable.
(ii) F (p1, . . . ,pn) is valid iff ∀p1 . . . ∀pnF (p1, . . . ,pn) is
true/satisfiable.
Algorithms will check whether a closed formula is true or false.



Splitting: foundations

Lemma
I A closed formula ∀pF is true if and only if the formulas F⊥p and

F>p are true.
I A closed formula ∃pF is true if and only if at least one of the

formulas F⊥p or F>p is true.



Splitting

Simplification rules for >:

¬> ⇒ ⊥
> ∧ F1 ∧ . . . ∧ Fn ⇒ F1 ∧ . . . ∧ Fn

> ∨ F1 ∨ . . . ∨ Fn ⇒ >
F → > ⇒ > > → F ⇒ F
F ↔ > ⇒ F > ↔ F ⇒ F

∀p> ⇒ >
∃p> ⇒ >

Simplification rules for ⊥:

¬⊥ ⇒ >
⊥ ∧ F1 ∧ . . . ∧ Fn ⇒ ⊥

⊥∨ F1 ∨ . . . ∨ Fn ⇒ F1 ∨ . . . ∨ Fn

F → ⊥ ⇒ ¬F ⊥ → F ⇒ >
F ↔ ⊥ ⇒ ¬F ⊥ ↔ F ⇒ ¬F

∀p⊥ ⇒ ⊥
∃p⊥ ⇒ ⊥
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Splitting algorithm
procedure splitting(F )

input: closed rectified prenex formula F
output: 0 or 1
parameters: function select variable value (selects a variable

from the outermost prefix of F and a boolean value for it)
begin
F := simplify(F )
if F = ⊥ then return 0
if F = > then return 1
Let F have the form ∀∃ p1 . . . ∀∃ pk F1

(p, b) := select variable value(F )
Let F ′ be obtained from F by deleting ∀∃ p from its outermost prefix
if b = 0 then (G1,G2) := (⊥,>)

else (G1,G2) := (>,⊥)
case (splitting((F ′)G1

p ), ∀∃ ) of
(0, ∀)⇒ return 0
(0, ∃)⇒ return splitting((F ′)G2

p )

(1, ∀)⇒ return splitting((F ′)G2
p )

(1, ∃)⇒ return 1
end



Splitting: examples
∀p∃q(p ↔ q)

∧

∃q(¬q)

p = 0

∨

>1

q = 0

1 ∃q(q)

p = 1

∨

>1

q = 1

1

1

∃q∀p(p ↔ q)
∨

∀p(¬p)

q = 0

∧

⊥0

p = 1

0 ∀p(p)

q = 1

∧

⊥0

p = 0

0

0

Note: selection of variable values is best understood as two-player
games: by selecting a value for ∃q one is trying to make the formula
true, by selecting a value for ∀p one is trying to make it false.
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CNF

For more efficient algorithms we need formulas to be in a convenient
normal form.

Our next aim is to modify CNF and DPLL to deal with quantified
boolean formulas.

A quantified boolean formula F is in CNF, if it is either ⊥, or >, or has
the form ∀∃ 1p1 . . . ∀∃ npn(C1 ∧ . . .∧Cm), where C1, . . . ,Cm are clauses.

Example:

∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s))
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CNF rules

Prenexing rules + propositional CNF rules:

F ↔ G ⇒ (¬F ∨G) ∧ (¬G ∨ F ),
F → G ⇒ ¬F ∨G,

¬(F ∧G) ⇒ ¬F ∨ ¬G,
¬(F ∨G) ⇒ ¬F ∧ ¬G,

¬¬F ⇒ F ,
(F1 ∧ . . . ∧ Fm) ∨G1 ∨ . . . ∨Gn ⇒ (F1 ∨G1 ∨ . . . ∨Gn) ∧

· · · ∧
(Fm ∨G1 ∨ . . . ∨Gn).



Unit Propagation (DPLL)

Input of DPLL:

I Q: quantifier sequence ∀∃ 1p1 . . . . . . ∀∃ npn

I S: a set of clauses

Main simplification – unit propagation with respect to Q,S:
if S contains a unit clause, i.e. a clause consisting of one literal L of
the form p or ¬p then

I if Q contains ∃p or p does not occur in Q
1. remove from S every clause of the form L ∨ C′;
2. replace in S every clause of the form L ∨ C′ by the clause C′.

I if Q contains ∀p, then replace S by the set {�};

Why different for universal quantifiers? Use intuition from games!

The player playing ∀ wants to make the formula false. So, when it is
his turn to make a move ∀p, he has a winning move: to select the
value for p which makes the unit clause false (and hence the
conjunction of clauses false too).
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DPLL algorithm

procedure DPLL(Q,S)

input: quantifier sequence Q = ∀∃ 1p1 . . . ∀∃ npn, set of clauses S
output: 0 or 1
parameters: function select variable value
begin

S := unit propagate(Q,S)
if S is empty then return 1
if S contains � then return 0
(p, b) := select variable value(Q,S)
Let Q′ be obtained from Q by deleting ∀∃ p from its outermost prefix
if b = 0 then L := ¬p

else L := p
case (DPLL(Q′,S ∪ {L}), ∀∃ ) of
(0, ∀)⇒ return 0
(0, ∃)⇒ return DPLL(Q′,S ∪ {L})
(1, ∀)⇒ return DPLL(Q′,S ∪ {L})
(1, ∃)⇒ return 1

end
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Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. L does not occur in S) then:

I If the variable of L is existentially quantified in Q then we can
remove all clauses in which L occurs.

I If the variable of L is universally quantified then we can remove L
from all clauses where L occurs.

Why?

I The ∃-player will make the literal true (so all clauses containing
this literal will be satisfied).

I The ∀-player will make the literal false (so it can be removed from
all clauses containing this literal).
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Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

I a variable p is existential in Q, if Q contains ∃p.
I a variable q is universal in Q, if Q contains ∀q.

I A variable p is quantified before a variable q if p occurs before q
in Q.

Example: If Q is ∀q∃p∀r then q is quantified before both p and r ; and
p is quantified before r (in Q).

Theorem
Let Q be a quantifier prefix and S a conjunction of clauses. Suppose
that

1. C is a clause in S;
2. a variable q in C is universal in Q;
3. all existential variables in C are quantified before q.

Then the deletion of the literal containing q from C does not change
the truth value of QS.
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Universal literal deletion

Let q1, . . . ,qm be all universal variables of C such that all existential
variables are quantified before them. Then C has the form:

L1 ∨ . . . ∨ Ln ∨ (¬)q1 ∨ . . . ∨ (¬)qm

Consider the position before the q1, . . . ,qm-moves of the ∀-player.

I If at least one of the literals L1, . . . ,Ln is true, deletion of
(¬)q1, . . . , (¬)qm will not change the outcome of the game, since
after any assignment to q1, . . . ,qm the clause will be true.

I If all of the literals L1, . . . ,Ln are false, the ∀-player will make all
(¬)q1, . . . , (¬)qm false and win the game, so deletion of these
literals will not change the outcome of the game either.
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L1 ∨ . . . ∨ Ln ∨ (¬)q1 ∨ . . . ∨ (¬)qm

Consider the position before the q1, . . . ,qm-moves of the ∀-player.

I If at least one of the literals L1, . . . ,Ln is true, deletion of
(¬)q1, . . . , (¬)qm will not change the outcome of the game, since
after any assignment to q1, . . . ,qm the clause will be true.

I If all of the literals L1, . . . ,Ln are false, the ∀-player will make all
(¬)q1, . . . , (¬)qm false and win the game, so deletion of these
literals will not change the outcome of the game either.
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Example

∃p∃q∀r∃s((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q∀r∃s(p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))⇒
∃q∀r∃s((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))⇒
∃q∃s(¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))⇒
∃s(s ∧ ¬s)⇒
�

I Apply universal literal deletion to p ∨ ¬r
I Apply unit propagation
I Apply the pure literal rule to r
I Apply unit propagation
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QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also
apply quantification to OBDDs in a straightforward way?

Quantification: given an OBDD representing a formula F , find an
OBDD representing ∀∃ 1p1 . . . ∀∃ npnF

There is no simple algorithm for quantification in general, but there is
one when ∀∃ 1 . . . ∀∃ n are the same quantifier.
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Quantification for OBDDs

We can use the following properties of QBFs:

I ∃p ( if p then F else G) ≡ F ∨G;
I ∀p ( if p then F else G) ≡ F ∧G;

I If p 6= q, then
∀∃ p ( if q then F else G) ≡ if q then ∀∃ pF else ∀∃ pG
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∃-quantification algorithm for OBDDs
procedure ∃quant({p1, . . . , pk}, {n1, . . . , nm})
parameters: global dag D
input: nodes n1, . . . , nm representing F1, . . . ,Fm in D
output: a node n representing ∃p1 . . .∃pk (F1 ∨ . . . ∨ Fm) in (modified) D
begin

if m = 0 then return 0

if some ni is 1 then return 1

if some ni is 0 then
return ∃quant({p1, . . . , pk}, {n1, . . . , ni−1, ni+1, . . . , nm})

p := max var(n1, . . . , nm)
forall i = 1 . . .m

if ni is labelled by p
then (li , ri) := (neg(ni), pos(ni))
else (li , ri) := (ni , ni)

if p ∈ {p1, . . . , pk}
then return ∃quant({p1, . . . , pk} − {p}, {l1, . . . , lm, r1, . . . , rm})
else
k1 := ∃quant({p1, . . . , pk}, {l1, . . . , lm})
k2 := ∃quant({p1, . . . , pk}, {r1, . . . , rm})
return integrate(k1, p, k2,D)

end



Example

Take the order p > q > r and the formula ∃p∃r(p ↔ ((p → r)↔ q)).

p

q q

r r

0 1
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b: q c: q
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∃quant({p, r}, {a}) = 1



∃-quantification algorithm for OBDDs
procedure ∃quant({p1, . . . , pk}, {n1, . . . , nm})
parameters: global dag D
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∀-quantification algorithm for OBDDs
procedure ∀quant({p1, . . . , pk}, {n1, . . . , nm})
parameters: global dag D
input: nodes n1, . . . , nm representing F1, . . . ,Fm in D
output: a node n representing ∀p1 . . .∀pk (F1 ∧ . . . ∧ Fm) in (modified) D
begin

if m = 0 then return 1

if some ni is 0 then return 0

if some ni is 1 then
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