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Two-Player Games

Does Garry Kasparov have a winning
strategy?
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Two-Player Games

Given a propositional formula G with variables p1, g1, ..., Pn, gn.
There are two players: P and Q.
At step k each player makes a move:

1. the player P can choose a boolean value for the variable py;
2. the player Q can choose a boolean value for the variable q.

The player P wins if after n steps the chosen values make the formula
G true.
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Consider several special cases
1. p1
2. p1 — Qs
3. g1 — gy If Gisvalid, P always wins!
4. p1 A —pq If Gis unsatisfiable, Q always wins!



Suppose Both Players Make no Errors

Consider several special cases

1.

ISl A

P

P1 — Q1

g1 — g1 If Gis valid, P always wins!

pi A —py If Gis unsatisfiable, Q always wins!
p1 < G

: Who Wins?
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Winning Strategy

Problem: does P have a winning strategy?
He has a winning strategy if
» there exists a move for P (a boolean value for for p;) such that
» for all moves of Q (boolean values for for g4)
» there exists a move for P (a boolean value for for p.) such that
» for all moves of Q (boolean values for for g)
>
>

for all moves of Q (boolean values for for g,) the formula G
becomes true.

The existence of a winning strategy can be expressed by a quantified
boolean formula 3p1Vq13p=VQe . .. APV s G.



Quantified Boolean Formulas

Propositional formula:

» Every boolean variable is a formula.
» T and L are formulas.

» If Fy,..., F,are formulas, where n > 2, then (Fy A... A F,) and
(F1 V...V Fp,) are formulas.

» If Fis aformula, then —F is a formula.

» If Fand G are formulas, then (F — G) and (F < G) are
formulas.



Quantified Boolean Formulas

Propositional formula:

» Every boolean variable is a formula.
» T and L are formulas.

» If Fy,..., F,are formulas, where n > 2, then (Fy A... A F,) and
(Fy V...V F,) are formulas.

» If Fis aformula, then —F is a formula.
» If Fand G are formulas, then (F — G) and (F < G) are
formulas.
Quantified boolean formulas:

» If pis a boolean variable and F is a formula, then VpF and 3pF
are formulas.



Quantifiers

Vv is called the universal quantifier.

T is called the existential quantifier.

Read VpF as “for all p, F”.

Read JpF as “there exists p such that F” or “for some p, F”.

vV v.vY



New Notation

Define

b def [ 1(Q),  ifp#a;
l(a) { b, ifp=q.

Example: let /= {p+— 1,9+~ 0,r — 1}. Then
= {p—1,9g=1r—1}
= {p—1,9=0r—1} = |
B = {p—~0,g—0r—1}



Semantics
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I(T)y=1and /(L) =0.

I(Fy A...AFp)=1ifand only if I(F;) = 1 for all /.
I(FiVv ...V F,)=1ifand only if /(F;) = 1 for some i.
(
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Semantics

N

o0k wN -

I(T)y=1and /(L) =0.

I(Fy A...AFp)=1ifand only if I(F;) = 1 for all /.
I(FiVv ...V F,)=1ifand only if /(F;) = 1 for some i.
I(=F )—1 if and only if /(F) = 0.

I(F— G)=1ifandonlyif I(F)=0or I(G) =

I(F <+ G) =1ifandonlyif I(F) = I(G).

I(VpF) = 1 if and only if lg(F) =1and /;(F) =
I(3pF) = 1ifand only if [3(F) =1 or I5(F) = 1.
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Evaluating a Formula: and-or trees

Let us evaluate Vp3q(p «+ q) on the interpretation {p — 1,q — 0}.
Denote any interpretation {p — by, q — ba} by Iy, p,.

/ Jq(p <
ho =Vpiglp < q) < /?2 ;z 32778; « Zg e
loo =p < q or
It =p <+ q
o and
lo ‘: p<q or
hi Ep+q




Evaluating a formula

lo = Vp3g(p < q)

N

loo = 3q(p < q) ho E3Ja(p < q)

/NN

loo =P+ q It Ep<q ho Ep+q hiEP+Qq
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Evaluating a formula

Denote any interpretation {p — by, g — b2} by Ip,,. Use wildcards =
to denote “any” boolean value.

lo« = 3q(p < q)
.. =Vp3 and
Fvpdglp e q) & | " = 3q(p © q)

o = p<q
b1 Ep+q
& and
ho Ep<+q
hiEp+q

or

or

The variables p and g are bound by quantifiers Vp and 3q, so the
value of the formula does not depend on these variables.



Subformula

Propositional formulas:
» The formulas Fi, ..., F, are the immediate subformulas of the
formulas F1 A...AFpand Fy V...V Fp.
» The formulas F is the immediate subformula of the formula —F.

» The formulas Fi, F,> are the immediate subformulas of the
formulas Fi — F> and Fy < Fo.



Subformula

Propositional formulas:
» The formulas Fi, ..., F, are the immediate subformulas of the
formulas F1 A...AFpand Fy V...V Fp.
» The formulas F is the immediate subformula of the formula —F.

» The formulas F;, F, are the immediate subformulas of the
formulas F1 — F> and F + Fo.

> ...
Quantified boolean formulas:

» The formula F; is the immediate subformula of the formulas VpF;
and JpF;.



Positions and Polarity

Let F|, = G.
Propositional formulas:

» If Ghastheform Gi A...AGyor Gy V...V Gy, then for all
i€ {1,...,n} the position 7./ is a position in F and

pol(F, .i) & pol(F, ).
» If G has the form ~G; , then .1 is a position in F, F|, 1 & G;
and pol(F,x.1) < —pol(F, ).



Positions and Polarity

Let F|, = G.
Propositional formulas:

» If Ghastheform Gi A...AGyor Gy V...V Gy, then for all
i€ {1,...,n} the position 7./ is a position in F and

pol(F,m.i) < pol(F, ).
» If G has the form -Gy , then 7.1 is a position in F, F| 1 oot Gi
and pol(F,=.1) £ —pol(F, ).
> ...
Quantified boolean formulas:
» If G has the form VpG; or 3pGy, then 7.1 is a position in F,
Fl.1 & Gy and pol(F,=.1) & pol(F, ).
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Example
- p— Vqip(q <> p) Vv r
I
VN

“p Flo1 =Vq3p(q < p)

vq

Flo1111 =9



Free and bound occurrences of variables

Let p be a boolean variable and F|,. = p.

» The occurrence of p at the position 7 in F is bound if = can be
represented as a concatenation of two strings 7> such that
F|x, has the form ¥pG or 3pG for some G.
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Free and bound occurrences of variables

Let p be a boolean variable and F|,. = p.

» The occurrence of p at the position 7 in F is bound if = can be
represented as a concatenation of two strings 7> such that
F|x, has the form ¥pG or 3pG for some G.

In other words, a bound occurrence of p is an occurrence in the
scope of Vp or Jp.

» Free occurrence: not bound.

» Free (bound) variable of a formula: a variable with at least one
free (bound) occurrence.

» Closed formula: formula with no free variables.



Example: Free and Bound Variables

/ﬁ\ p— vgq3ip(q <> p) vV r
P v
(free) / \

vq
/ (free)



Only Free Variables Matter

The truth value of a formula depends only on the truth values of free
variables of the formula:
Lemma
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Only Free Variables Matter

The truth value of a formula depends only on the truth values of free
variables of the formula:

Lemma
Let for all free variables p of a formula F we have I1(p) = L(p). Then
li E Fifandonly ifl, = F.

Theorem
Let F be a closed formula and Iy, I» be interpretations. Then Iy = F if
andonly iflb = F.
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Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas.

There is no difference between these notions for closed formulas:

Lemma

For every interpretation | and closed formula F the following
propositions are equivalent: (i) | = F; (ii) F is satisfiable; and (iii) F is
valid.

Validity and satisfiability can be expressed through truth:

Lemma
Let F be a formula with free variables py, . .., pn.

» F is satisfiable if and only if the formula 3p; ... 3p,F is satisfiable
(true, valid).

» F is valid if and only if the formula~p; ...Vp,F is valid (true,
satisfiable).



More on free and bound occurrences

int symdiff (int 1i,int 7j)

return 1 > jJ ? 1 - 3 : J - 1i;

sum = i + symdiff (3,4);



More on free and bound occurrences

binding
v
int symdiff (int 1i,int 7j)
return i > J ? % __j/i//j/:)i;
bound

sum = i + symdiff (3,4);
N

free



More on free and bound occurrences
int symdiff (int 1i,int 3j)
return i > § ? i - 3 : J - 1i;
sum = i + symdiff (3,4);

Renaming bound variables does not change the semantics of the
program:
%nt symdiff (int k,int 7j)

return k > jJ 2?2 k - 3 : J - k;

sum = i + symdiff (3,4);
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Substitutions for propositional formulas

Substitution: (F)g: denotes the formula obtained from F by replacing
all occurrences of the variable p by G.

Example:

(InS) _

((pVvs)A(q—p)),
((Ins)vs)A(g— (INS)

Properties: If we apply any substitution to a valid formula then we
also obtain a valid formula.
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Substitution for quantified formulas

Some problems...
Consider 3q(—p + Q).

We cannot simply replace variables by formulas any more:
Ar—=r)(-p<r—r)???

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a

formula, e.g. (Vop — q) A (g V (@ — p))
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Renaming bound variables
Notation: ¥: any of 3, V and x: any of A, V.

Renaming bound variables in F:
Let F[ ¥pG].
1. Take a fresh variable g (that is a variable not occurring in F);
2. Replace all free occurrences of p in G (note: not in F!) by g
obtaining G'.
3. So we obtain the F[ 37gG’ | as the result.

Lemma
F[¥pG]= F[¥qG ]

Example:
3q( Vp((p — q) Ap) ) V p.

Then we can rename p into r obtaining
Aq(Vr((r—q)Ar))Vp.
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Rectified formulas

Rectified formula F:
» no variable appears both free and bound in F;

» for every variable p, the formula F contains at most one
occurrence of quantifiers ¥/p.

Any formula can be transformed into a rectified formula by renaming
bound variables.

We can use the usual notation (F)E for rectified formulas assuming
that p occurs only free.
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Rectification: Example

p—3p(pA Vp(pVr— —p))=

p— 3p(pAVPi(pr VI ——p1)) =

p — 3p2(p2 AVPi(p1 V I — —=p1))
This formula is rectified and equivalent to the original one.
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Jq(—p > q): there exists a truth value equal to the value of —p. This
formula is valid.

Rename pinto q.



Another problem

Jq(—p > q): there exists a truth value equal to the value of —p. This
formula is valid.

Rename pinto q.

3q(—q <> q): there exists a truth value equivalent to its own negation.
This formula is unsatisfiable.
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Another restriction

Suppose we want to substitute (F)S5.

Then we require: no free variable in G become bound in (F)ﬁ.

In previous example 3g(—p + q):
Substitute p by q. (3g(—q +> q) does not satisfy above)

Uniform solution — renaming of bound variables
3q(-p <> q) =3r(-p < 1)

Now we can substitute p by g obtaining 3r(—q « r)
From now on we always assume that:

» formulas are rectified.
» all substitutions satisfy the requirement above



Equivalent replacement

Lemma
Let | be an interpretation and | = Fy <+ F». Then | = G[F1] + G[F2].

Theorem (Equivalent Replacement)
Let F1 = F2. Then G[F1] = G[Fg]
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Prenex form

» Quantifier-free formula: no quantifiers (that is, propositional).

» Prenex formula has the form 31 p; ... 3,pnG, where G is
quantifier-free.

» Outermost prefix of 371 py ... ¥ ,pnG: the longest subsequence
F1p1 ... Wepk of W1py ... ¥npn such that 3¢ = ... = .

» Aformula F is a prenex form of a formula G if F is prenex and
F=aG.



Prenexing rules

Prenexing rules:
FpFix. .. XF, = Fp(Fixx...%Fp)

VpF1 — F2 = E|,D(F1 — Fg) E|,DF1 — F2 = Vp(F1 — Fg)
F1 —>VpF2 = Vp(F1 — Fg) F1 — E|,DF2 = Hp(F1 — Fg)

—-VpF = dp-F —-3pF = Vp-F




Prenexing. Example |

Jq(g — p) = ~Vr(r—p)Vp=
vq((q — p) = ~Vr(r = p) Vv p)=
vq((q — p) = 3r-(r — p) vV p) =
vq((q — p) = 3r(=(r = p) v p)) =
vq3r((g — p) — —(r — p) vV p).



Prenexing. Example I

dq(q — p) —» ~Vr(r = p)Vp=
dq(q Hp)eﬂrﬁ(r%p)Vpﬁ
3q9(q — p) = 3Ir(=(r = p) v p) =
r(39(q = p) = ~(r = p)vp) =
arvq((g — p) = =(r — p) v p).



What’s next

Algorithms for satisfiability, validity of QBF:
» Splitting
» DPLL

Reminder:

(i) F(py,...,pn) is satisfiable iff 3p; ... 3p,F(p1,...,pn) is
true/satisfiable.

(i) F(p1,- .., pn) is valid iff Vpi...YpaF(p1, ..., pn)is
true/satisfiable.

Algorithms will check whether a closed formula is true or false.



Splitting: foundations

Lemma
» A closed formula VpF is true if and only if the formulas F,- and
F, are true.

» A closed formula 3pF is true if and only if at least one of the
formulas F,- or F, is true.



Splitting

Simplification rules for T:

-T = 1
TAFRAN...NFh = FiAN...ANFp
TVFRV...VF, = T
F>T =T T—F = F
FeT = F T« F = F

Simplification rules for L:

-l =T
1LVFAV...VF, = FRV...VF
F— 1 = =F 1Ll —-F =TT
Fel = -F L& F = -F



Splitting

Simplification rules for T:

-1 = L
TAFRAN...NFh = FiAN...ANFp
TVFHRV..VF, = T

F—>T =T T—F=F
FeT = F T« F = F
vpT = T

JpT = T

Simplification rules for L:

-l =T
IAFRAN...ANF, = L
1LVFAV...VF, = FRV...VF
F— 1 = =F 1Ll —-F =TT
Fe 1l = -F L« F = —=F
Vpl = L
ol = L



Splitting algorithm

procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select_variable_value (selects a variable
from the outermost prefix of F and a boolean value for it)

begin

F = simplify(F)

if F = 1 thenreturn0

if F = T then return 1

Let F have the form 3/p; ... Fpi F

(p,b) := select_variable_value(F)

Let F’ be obtained from F by deleting vp from its outermost prefix

ifb=0then (Gi,G:) := (L, T)

else (Gi,Gz) := (T,1)

(splitting((F")§"), 37) of
0,V) = return 0
0,3) = return splitting((F')5?)
1,V)
1,3)

case

= return splitting((F')5?)
= return 1

)

—~ e~~~

[=}

en
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Vp3q( pH q)
1 39(—-q)

v /

3qvp(p <> q)
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Splitting: examples

3qvp(p < q) 0

a=0/" "V Ng-1

0 Vp(-p) vp(p) O
p=1 a p=0

0 L 0 L
Note: selection of variable values is best understood as two-player

games: by selecting a value for 9qg one is trying to make the formula
true, by selecting a value for Vp one is trying to make it false.
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CNF

For more efficient algorithms we need formulas to be in a convenient
normal form.

Our next aim is to modify CNF and DPLL to deal with quantified
boolean formulas.

A quantified boolean formula F is in CNF, if it is either L, or T, or has
the form 1py ... ¥ppn(Ci A ... A Cp), where Cy, ..., Cy are clauses.

Example:

Vp3g3s((—-pV sV q)A(sV =q)A-s))



CNF rules

Prenexing rules + propositional CNF rules:

F< G

F—G

-(FAG)

-(FVv@G)

--F
(FsN...ANFR)VGiV...V Gy

R R

(=FVG)A(-GVF),
-FV G,

-FV -G,

-F NG,

F,
(FivGiV...VGp)

(FnV Gi V...V Gn).
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Unit Propagation (DPLL)

Input of DPLL:

» Q: quantifier sequence /1p1 .. .. .. FnPn
» S: aset of clauses
Main simplification — unit propagation with respect to Q, S:
if S contains a unit clause, i.e. a clause consisting of one literal L of
the form p or —p then
» if Q contains dp or p does not occur in Q
1. remove from S every clause of the form L v C';
2. replace in S every clause of the form L v C’ by the clause C'.
» if Q contains Vp, then replace S by the set {{J};
Why different for universal quantifiers? Use intuition from games!

The player playing V wants to make the formula false. So, when it is
his turn to make a move Vp, he has a winning move: to select the
value for p which makes the unit clause false (and hence the
conjunction of clauses false t00).



DPLL algorithm

procedure DPLL(Q, S)
input: quantifier sequence Q = 1 ps ... ¥ypn, set of clauses S
output: 0 or 1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if S is empty then return 1
if S contains [J then return 0
(p,b) := select_variable_value(Q, S)
Let Q" be obtained from Q by deleting 3/p from its outermost prefix
ifb=0thenl := —p
elsel := p
(DPLL(Q',SU{L}), ¥) of
) = return 0
,3) = return DPLL(Q',SU{L})
)
,3)

= return DPLL(Q', SU {L})
= return 1
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Pure literal rule

Let Q be quantifier prefix and S set of clauses.
Let literal L be pure in S (i.e. L does not occur in S) then:

» |f the variable of L is existentially quantified in Q then we can
remove all clauses in which L occurs.

» If the variable of L is universally quantified then we can remove L
from all clauses where L occurs.

Why?
» The 3-player will make the literal true (so all clauses containing
this literal will be satisfied).

» The V-player will make the literal false (so it can be removed from
all clauses containing this literal).
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Universal literal deletion

Consider a quantifier prefix Q and a conjunction of clauses S.

» avariable p is existential in Q, if Q contains Jp.
» avariable g is universal in Q, if Q contains Vg.
» A variable p is quantified before a variable g if p occurs before g
in Q.
Example: If Qis Yg3pV¥r then q is quantified before both p and r; and
p is quantified before r (in Q).

Theorem
Let Q be a quantifier prefix and S a conjunction of clauses. Suppose
that

1. Cisaclausein S;
2. avariable q in C is universal in Q;
3. all existential variables in C are quantified before q.

Then the deletion of the literal containing q from C does not change
the truth value of QS.



Universal literal deletion
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Letgy,..., gm be all universal variables of C such that all existential

variables are quantified before them. Then C has the form:

L1V...\/Ln\/(—‘)Ch\/...\/(—‘)qm

Consider the position before the gy, . . ., g»,-moves of the V-player.
» If at least one of the literals L1, ..., L, is true, deletion of
(=)q1, - - -, (=)gm will not change the outcome of the game, since

after any assignment to gy, . . ., g the clause will be true.



Universal literal deletion

Letgy,..., gm be all universal variables of C such that all existential

variables are quantified before them. Then C has the form:

L1V...\/Ln\/(—‘)Ch\/...\/(—‘)qm

Consider the position before the gy, . . ., gm-moves of the V-player.

» If at least one of the literals L1, ..., L, is true, deletion of

(7)q1, ..., (—)gm false and win the game, so deletion of these
literals will not change the outcome of the game either.
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AqVras((—qVv r)A(gV s)A(gV Vv —s)) =

3g3s(~g A (qV s) A (qV —s)) =
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Ip3gvras((pV —-r)A(=qV r)A(=pV qV S)A(-pV gV rVv-s)) =
Ip3qvras(p A (mqV ) A(-mpV gV S)A(-pV qVrV-s)) =
AqVras((—qVv r)A(gV s)A(gV Vv —s)) =

3g3s(~g A (qV s) A (qV —s)) =

3s(s A —s) =

g

Apply universal literal deletion to p vV —r
Apply unit propagation
Apply the pure literal rule to r

vV v vvY

Apply unit propagation
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Slides for lecture 15 end here ...



QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also
apply quantification to OBDDs in a straightforward way?



QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also
apply quantification to OBDDs in a straightforward way?

Quantification: given an OBDD representing a formula F, find an
OBDD representing /1p; ... ¥ppnF



QBF and OBDD

We know how to apply boolean operations to OBDDs. Can we also
apply quantification to OBDDs in a straightforward way?

Quantification: given an OBDD representing a formula F, find an
OBDD representing /1p; ... ¥ppnF

There is no simple algorithm for quantification in general, but there is
one when T4 ... ¥/, are the same quantifier.
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Quantification for OBDDs

We can use the following properties of QBFs:
» dp (if pthen F else G) = FV G;
» Vp (if p then F else G) = F A G;

» If p £ g, then
Fp (if q then F else G) = if q then 3/pF else I/pG



J-quantification algorithm for OBDDs

procedure Squant({ps, ..., Pk}, {N,....Nm})
parameters: global dag D

input: nodes ny, ..., n, representing F,...,Fnin D
output: a node n representing 3p1 ... 3pk(F1 V...V Fn) in (modified) D
begin

if m = 0 then return [0]
if some n; is L1 then return

if some n; is (0] then
return Squant({p1, ..., pPx}, {N1, .., Ni—1,Nis1, ..., Nm})
p := max_var(ni,...,Nm)
forall i =1...m
if n; is labelled by p
then (I,r)) := (neg(n;), pos(n))
else (/i,r;) := (ni,m)
ifpe{p,....pc}
then return Squant({ps,...,px} — {p},{l, - lms 11y Im})
else
ki := Hquant({p“v--'ﬂpk}v{/“*"'vlm})
ko := Jquant({p1,....px}.{r,...,rm})
return integrate(ki, p, k2, D)
end




Example

Take the order p > g > r and the formula 3p3r(p <> ((p — r) <> q)).
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dquant({r},{0, e})
Jquant({r}, {e})
Jquant({},{0,1})
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Example

3quant({pv I’}, {a}) -




J-quantification algorithm for OBDDs

procedure Squant({ps, ..., Pk}, {N,....Nm})
parameters: global dag D

input: nodes ny, ..., n, representing F,...,Fnin D
output: a node n representing 3p1 ... 3px(F1 VvV ... V Fp) in (modified) D
begin

if m = 0 then return [0]
if some n; is L1 then return

if some n; is (0] then
return Squant({p1, ..., pPx}, {N1, .., Ni—1,Nis1, ..., Nm})
p := max_var(ni,...,Nm)
forall i =1...m
if n; is labelled by p
then (I,r)) := (neg(n;), pos(n))
else (/i,r;) := (ni,m)
ifpe{p,....pc}
then return Squant({ps,...,px} — {p},{l, - lms 11y Im})
else
ki := Hquant({p“v--'ﬂpk}v{/“*"'vlm})
ko := Jquant({p1,....px}.{r,...,rm})
return integrate(ki, p, k2, D)
end




V-quantification algorithm for OBDDs

procedure Vquant({ps,...,px}, {N,....Nm})
parameters: global dag D

input: nodes ny, ..., n, representing F,...,Fnin D
output: a node n representing Vp1 ...Vpk(F1 A ... A Fn) in (modified) D
begin

ﬁm:OMreturn
if some n; is [0] then return [0]
if some n; is 1]/ then
return Vquant({p1, ..., px}, {Nt,. .., Ni—1,Nis1, ..., Nm})
p := max_var(ni,...,Nm)
forall i =1...m
if n; is labelled by p
then (1, r) := (neg(n;), pos(ni))
else (/1) := (ni,m)
ifpe{p,....pc}
then return Vquant({ps,...,px} — {p},{l, - Im 11y o Im})
else
ki := unant({p17--'1pk}7{/1~"'7/m})
ko := Vquant({p1,....px}.{r,...,Im})
return integrate(ki, p, k2, D)
end
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