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Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?
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SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

» SAT is NP-complete;
» 2-SAT is decidable in linear time;
» 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

LiVIioVIigVig...

And replace it by two clauses:

LiVvioVvn
-nVizgVig...

where nis a new variable.
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Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps  Ps5 Pi P2 Ps  Ps+  Ps
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Number of models: 0
This set of 13 clauses is unsatisfiable.
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Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:
» Number n of boolean variables;
» Number k of literals per clause, so we will generate k-SAT
instances;
> . Real number r: ratio of clauses per
variable.

Generate [rn] clauses, each one has k literals randomly generated
among p1, ..., Pn, P1, - - -, Py With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.
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SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What would you bet on
if we generate 5
clauses?

» What would you bet on
if we generate 100
clauses?

» What would you bet on
if we generate 15
clauses?



Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
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This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
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This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
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Conjecture: for n — oo every e-window “degenerates into a point”.



Sharp Phase Transition
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Slides for lecture 8 end here ...
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Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
return don’t know
end
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SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT is a decision problem:

» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that / has a yes-answer.
Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.
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Randomised Algorithms for SAT

» Choose a random interpretation.

» [f this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flio(l,p)(q) = 1, if p=gqgand I(p) =0;
0, if p=gqgand/(p)=1.

In other words, the interpretation flip(/, p) is obtained from / by
changing its value on p.
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GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
repeat MAX-FLIPS times
p := avariable such that flip(/, p) satisfies
the maximal number of clauses in S

I = flip(1, p)
if / = S then return /

return don’t know

end
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procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
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real number 0 < 7 < 1 (probability of a sideways move),

begin
repeat MAX-TRIES times
| := random interpretation ;

if / = S then return /

end



GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
real number 0 < 7 < 1 (probability of a sideways move),

begin
repeat MAX-TRIES times
| := random interpretation ;

if / = S then return /
repeat MAX-FLIPS times
with probability =
p := avariable such that flip(/, p) satisfies
the maximal number of clauses in S
with probability 1 — =
randomly select p among all variables occurring in clauses false in /
I = flip(/, p) ;
if / = S then return /
return don’t know
end
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procedure WSAT(S)
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begin
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| := random interpretation

if / = S then return /
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WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
repeat MAX-FLIPS times

randomly select a clause C € S such that / = C
randomly select a variable pin C
I = flip(1, p)
if / = S then return /

return don’t know

end




WSAT Example

pi V. P2 V. p3

—p2 V. P

—p1 V. —ps3
PV P2



WSAT Example

flip
no.

0 0 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
PV P2
p1 VvV P2
interpretation | unsatisfied | candidates
p1 P2 P3 clauses for flipping

flipped
variable

0 O 1
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-pr vV P2
Pt VvV P2
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no. | p1 P2 pPs clauses for flipping | variable
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1 1 0
pi V. —2p2 V. 3
P2 V. —p3
P4 V. P3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps P2
—P1V P2
3|1 1 1 | =p2V-ps | p1.P2,Ps Ps

—P1V P3
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