Outline

Satisfiability and Randomisation
Randomly Generated Clause Sets
Sharp Phase Transition
Randomised Algoritms for Satisfiability-Checking

Random Clause Generation

How can one generate a random clause?

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.

- Fix a number n of boolean variables;

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.

- Fix a number n of boolean variables;
- Select a literal among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.
A random clause is a collection of random literals.

- Fix a number n of boolean variables;
- Select a literal among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.
A random clause is a collection of random literals.

- Fix a number n of boolean variables;
- Select a literal among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.
- Fix the length k of a clause;

Random Clause Generation

How can one generate a random clause?
Let's first generate a random literal.
A random clause is a collection of random literals.

- Fix a number n of boolean variables;
- Select a literal among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.
- Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the set of models of this set change?

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses. k-SAT is the problem of satisfiability checking for sets of clauses of length k.

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses. k-SAT is the problem of satisfiability checking for sets of clauses of length k.

- SAT is NP-complete;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses. k-SAT is the problem of satisfiability checking for sets of clauses of length k.

- SAT is NP-complete;
- 2-SAT is decidable in linear time;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses. k-SAT is the problem of satisfiability checking for sets of clauses of length k.

- SAT is NP-complete;
- 2-SAT is decidable in linear time;
- 3-SAT is NP-complete.

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.
k-SAT is the problem of satisfiability checking for sets of clauses of length k.

- SAT is NP-complete;
- 2-SAT is decidable in linear time;
- 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas as used for generating short clausal forms (naming). Take a clause having more than 3 literals:

$$
L_{1} \vee L_{2} \vee L_{3} \vee L_{4} \ldots
$$

And replace it by two clauses:

$$
\begin{aligned}
& L_{1} \vee L_{2} \vee n \\
& \neg n \vee L_{3} \vee L_{4} \ldots
\end{aligned}
$$

where n is a new variable.

Example (Obtained by a Program) for $n=5$ and $k=2$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	0	1	1	1	1	0	1
0	1	1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1

Number of models: 32

Example (Obtained by a Program) for $n=5$ and $k=2$

$\neg p_{2} \vee \neg p_{3}$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
	0	1	0	0	0	1	1	0	0	0
	0	1	0	0	1	1	1	0	0	1
	0	1	0	1	0	1	1	0	1	0
	0	1	0	1	1	1	1	0	1	1
	0	1	1	0	0	1	1	1	0	0
	0	1	1	0	1	1	1	1	0	1
	0	1	1	1	0	1	1	1	1	0
	0	1	1	1	1	1	1	1	1	1

Number of models: 32

Example (Obtained by a Program) for $n=5$ and $k=2$

$\neg p_{2} \vee \neg p_{3}$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
	0	1	0	0	0	1	1	0	0	0
	0	1	0	0	1	1	1	0	0	1
	0	1	0	1	0	1	1	0	1	0
	0	1	0	1	1	1	1	0	1	1

Number of models: 24

Example (Obtained by a Program) for $n=5$ and $k=2$

$\begin{aligned} & \neg p_{2} \vee \neg p_{3} \\ & \neg p_{2} \vee p_{1} \end{aligned}$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
	0	1	0	0	0	1	1	0	0	0
	0	1	0	0	1	1	1	0	0	1
	0	1	0	1	0	1	1	0	1	0
	0	1	0	1	1	1	1	0	1	1

Number of models: 24

Example (Obtained by a Program) for $n=5$ and $k=2$

$\begin{aligned} & \neg p_{2} \vee \neg p_{3} \\ & \neg p_{2} \vee p_{1} \end{aligned}$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

Number of models: 20

Example (Obtained by a Program) for $n=5$ and $k=2$

$\neg p_{2} \vee \neg p_{3}$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 20

Example (Obtained by a Program) for $n=5$ and $k=2$

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 20

Example (Obtained by a Program) for $n=5$ and $k=2$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 12

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Number of models: 12

Example (Obtained by a Program) for $n=5$ and $k=2$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}				
				p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
			0	0	0	0		
1	0	0	0	1				
		1	0	0	1	0		
1	0	0	1	1				
		1	0	1	0	0		
		0	1	0	1			
		0	1	1	0			
		1	0	1	1	1		
		1	1	0	0	0		
		1	0	0	1			
		1	0	1	0			
		1	0	1	1			

Number of models: 12

Example (Obtained by a Program) for $n=5$ and $k=2$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 9

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$

1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 9

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$

1	0	0	0	1
1	0	0	1	0
1	0	0	1	1

 10110
 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |

Number of models: 7

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$

1	0	0	0	1
1	0	0	1	0
1	0	0	1	1

100110

1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 7

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$

1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Number of models: 4

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$
$p_{5} \vee \neg p_{2}$

Number of models: 4

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$
$p_{5} \vee \neg p_{2}$

Number of models: 3

Example (Obtained by a Program) for $n=5$ and $k=2$

$$
\begin{array}{lllll}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} \\
\hline
\end{array}
$$

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}

$$
\begin{aligned}
& \neg p_{2} \vee \neg p_{3} \\
& \neg p_{2} \vee p_{1} \\
& \neg p_{2} \vee p_{2} \\
& p_{1} \vee p_{1} \\
& \neg p_{5} \vee p_{5} \\
& p_{4} \vee p_{5} \\
& \neg p_{5} \vee \neg p_{3} \\
& p_{2} \vee \neg p_{4} \\
& p_{5} \vee \neg p_{2} \\
& p_{5} \vee p_{2}
\end{aligned}
$$

$$
\begin{array}{lllll}
1 & 0 & 0 & 0 & 1
\end{array}
$$

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$
$p_{5} \vee \neg p_{2}$
$p_{5} \vee p_{2}$

Number of models: 1

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$
$p_{5} \vee \neg p_{2}$
$p_{5} \vee p_{2}$
$\neg p_{1} \vee \neg p_{4}$

Number of models: 1

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |

$\neg p_{2} \vee \neg p_{3}$
$\neg p_{2} \vee p_{1}$
$\neg p_{2} \vee p_{2}$
$p_{1} \vee p_{1}$
$\neg p_{5} \vee p_{5}$
$p_{4} \vee p_{5}$
$\neg p_{5} \vee \neg p_{3}$
$p_{2} \vee \neg p_{4}$
$p_{5} \vee \neg p_{2}$
$p_{5} \vee p_{2}$
$\neg p_{1} \vee \neg p_{4}$
$p_{5} \vee p_{2}$

Number of models: 1

Example (Obtained by a Program) for $n=5$ and $k=2$

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
$\neg p_{2} \vee \neg p_{3}$						1	0	0	0	1
$\neg p_{2} \vee p_{1}$										
$\neg p_{2} \vee p_{2}$										
$p_{1} \vee p_{1}$										
$\neg p_{5} \vee p_{5}$										
$p_{4} \vee p_{5}$										
$\neg p_{5} \vee \neg p_{3}$										
$p_{2} \vee \neg p_{4}$										
$p_{5} \vee \neg p_{2}$										
$p_{5} \vee p_{2}$										
$\neg p_{1} \vee \neg p_{4}$										
$p_{5} \vee p_{2}$										
$\neg p_{1} \vee \neg p_{5}$										

Number of models: 1

Example (Obtained by a Program) for $n=5$ and $k=2$

| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| p_{1} | p_{2} | p_{3} | p_{4} | p_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \neg p_{2} \vee \neg p_{3} \\
& \neg p_{2} \vee p_{1} \\
& \neg p_{2} \vee p_{2} \\
& p_{1} \vee p_{1} \\
& \neg p_{5} \vee p_{5} \\
& p_{4} \vee p_{5} \\
& \neg p_{5} \vee \neg p_{3} \\
& p_{2} \vee \neg p_{4} \\
& p_{5} \vee \neg p_{2} \\
& p_{5} \vee p_{2} \\
& \neg p_{1} \vee \neg p_{4} \\
& p_{5} \vee p_{2} \\
& \neg p_{1} \vee \neg p_{5}
\end{aligned}
$$

Number of models: 0
This set of 13 clauses is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number m of clauses.

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number m of clauses.

Generate $m \quad$ clauses, each one has k literals randomly generated among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number m of clauses.

Generate $m \quad$ clauses, each one has k literals randomly generated among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.
Note that the probability is a monotone function: the more clauses we generate, the higher chance we have that the set is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number m of clauses. Real number r : ratio of clauses per variable.

Generate [rn] clauses, each one has k literals randomly generated among $p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}$ with an equal probability.
Note that the probability is a monotone function: the more clauses we generate, the higher chance we have that the set is unsatisfiable.

Roulette

SAT Roulette

We will generate random instances of 2-SAT with 5 -variables.
You will bet on whether the resuting set of clauses is satisfiable or not.

SAT Roulette

We will generate random instances of 2-SAT with 5 -variables.
You will bet on whether the resuting set of clauses is satisfiable or not.

- What would you bet on if we generate 5 clauses?

SAT Roulette

We will generate random instances of 2-SAT with 5 -variables.
You will bet on whether the resuting set of clauses is satisfiable or not.

- What would you bet on if we generate 5 clauses?
- What would you bet on if we generate 100 clauses?

SAT Roulette

We will generate random instances of 2-SAT with 5 -variables.
You will bet on whether the resuting set of clauses is satisfiable or not.

- What would you bet on if we generate 5 clauses?
- What would you bet on if we generate 100 clauses?
- What would you bet on if we generate 15 clauses?

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set.

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set. Crossover point: the value of r at which the probability crosses 0.5 .

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set. Crossover point: the value of r at which the probability crosses 0.5 .

ϵ-Window

Take a (small) number $\epsilon>0$. ϵ-window is the interval of values of r where the probability is between ϵ and $1-\epsilon$.

ϵ-Window

Take a (small) number $\epsilon>0$. ϵ-window is the interval of values of r where the probability is between ϵ and $1-\epsilon$.

For example, take $\epsilon=0.1$.

ϵ-Window

Take a (small) number $\epsilon>0$. ϵ-window is the interval of values of r where the probability is between ϵ and $1-\epsilon$.

For example, take $\epsilon=0.1$.

Scaling Window Effect

Scaling Window Effect

Scaling Window Effect

Scaling Window Effect

Conjecture: for $n \rightarrow \infty$ every ϵ-window "degenerates into a point".

Sharp Phase Transition

Easy-Hard-Easy Pattern

End of Lecture 8

Slides for lecture 8 end here ...

Satisfiability-Checking Algorithm that Cannot Establish Unsatisfiability

Satisfiability-Checking Algorithm that Cannot Establish Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know

Satisfiability-Checking Algorithm that Cannot Establish Unsatisfiability

procedure $\mathrm{CHAOS}(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times

end

Satisfiability-Checking Algorithm that Cannot Establish Unsatisfiability

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I }=S\mathrm{ or don't know
parameters: positive integer MAX-TRIES
begin
    repeat MAX-TRIES times
    | := random interpretation
    if }|\modelsS\mathrm{ then return l
    return don't know
end
```


SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I : any data D such that, given D, one can check in polynomial time (in D) that / has a yes-answer.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I : any data D such that, given D, one can check in polynomial time (in D) that / has a yes-answer.

Satisfiability has short witnesses: interpretations.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.
Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I : any data D such that, given D, one can check in polynomial time (in D) that / has a yes-answer.

Satisfiability has short witnesses: interpretations.
Unsatisfiability has no polynomial-size witnesses, unless NP $=c o N P$.

Randomised Algorithms for SAT

- Choose a random interpretation.

Randomised Algorithms for SAT

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

Randomised Algorithms for SAT

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).
The flipped variables are chosen using heuristics or randomly, or both.

Randomised Algorithms for SAT

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$
\text { flip }(I, p)(q)= \begin{cases}I(q), & \text { if } p \neq q ; \\ 1, & \text { if } p=q \text { and } I(p)=0 \\ 0, & \text { if } p=q \text { and } I(p)=1\end{cases}
$$

Randomised Algorithms for SAT

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$
\text { flip }(I, p)(q)= \begin{cases}I(q), & \text { if } p \neq q ; \\ 1, & \text { if } p=q \text { and } I(p)=0 \\ 0, & \text { if } p=q \text { and } I(p)=1\end{cases}
$$

In other words, the interpretation flip (I, p) is obtained from / by changing its value on p.

GSAT

procedure $\operatorname{GSAT}(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know

GSAT

procedure $G S A T(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS

GSAT

procedure $G S A T(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat $M A X-T R I E S$ times
$I:=$ random interpretation
if $I \models S$ then return $/$
end

GSAT

procedure $G S A T(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
I := random interpretation
if $l \models S$ then return $/$
repeat MAX-FLIPS times
$p:=$ a variable such that flip (I, p) satisfies the maximal number of clauses in S
$I=f l i p(I, p)$
if $I \models S$ then return $/$
return don't know
end

GSAT Example

$$
\begin{array}{ccccc}
0 & & 0 & & 1 \\
\hline p_{1} & \vee & \neg p_{2} & \vee & p_{3} \\
& & \neg p_{2} & \vee & \neg p_{3} \\
\neg p_{1} & & & \vee & \neg p_{3} \\
\neg p_{1} & \vee & p_{2} & & \\
p_{1} & \vee & p_{2} & &
\end{array}
$$

GSAT Example

0		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped no.
	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4					

GSAT Example

0		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4		

GSAT Example

0		1		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1						

GSAT Example

0		1		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4					

GSAT Example

0		1		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4		

GSAT Example

0		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_{3}
3	0	1	0						

GSAT Example

0		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_{3}
3	0	1	0	4					

GSAT Example

0		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation				satisfied clauses				candidates
flipped									
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_{3}
3	0	1	0	4	5	4	4		

GSAT Example

1		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_{3}
3	0	1	0	4	5	4	4	p_{1}	p_{1}

GSAT Example

1		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_{1}	p_{2}	p_{3}		p_{1}	p_{2}	p_{3}	for flipping	variable
1	0	0	1	4	3	4	4	p_{2}, p_{3}	p_{2}
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_{3}
3	0	1	0	4	5	4	4	p_{1}	p_{1}

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
real number $0 \leq \pi \leq 1$ (probability of a sideways move),

GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
real number $0 \leq \pi \leq 1$ (probability of a sideways move),
begin
repeat MAX-TRIES times
I := random interpretation;
if $I \models S$ then return $/$

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS real number $0 \leq \pi \leq 1$ (probability of a sideways move),
begin
repeat $M A X-T R I E S$ times
I := random interpretation;
if $I \models S$ then return $/$
repeat MAX-FLIPS times
with probability π
$p:=$ a variable such that flip (I, p) satisfies the maximal number of clauses in S
with probability $1-\pi$
randomly select p among all variables occurring in clauses false in /
$I=f l i p(I, p)$;
if $I \models S$ then return $/$
return don't know
end

WSAT

procedure $W S A T(S)$
input: set of clauses S
output: interpretation / such that $I=S$ or don't know parameters: integers MAX-TRIES, MAX-FLIPS

WSAT

procedure $W S A T(S)$
input: set of clauses S
output: interpretation / such that $I \models S$ or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
I := random interpretation
if $I \models S$ then return $/$
end

WSAT

```
procedure WSAT(S)
input: set of clauses S
output: interpretation / such that I }=\mathrm{ S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
    repeat MAX-TRIES times
    | := random interpretation
    if I}=S\mathrm{ then return I
    repeat MAX-FLIPS times
    randomly select a clause C }\inS\mathrm{ such that I }\not\models
        randomly select a variable p in C
        I=flip(I,p)
        if }|\modelsS\mathrm{ then return I
    return don't know
end
```


WSAT Example

0	0		1	
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

WSAT Example

0		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied clauses	candidates for flipping	flipped variable
no.	p_{1}	p_{2}	p_{3}			
1	0	0	1			

WSAT Example

0		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied	candidates clauses	flipped nor flipping
	p_{1}	p_{2}	p_{3}	variable		

WSAT Example

1		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied clauses	candidates for flipping	flipped variable
no.	p_{1}	p_{2}	p_{3}			
1	0	0	1	$p_{1} \vee p_{2}$	p_{1}, p_{2}	p_{1}
2	1	0	1			

WSAT Example

1		0		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied	candidates clauses	flipped nor flipping
	p_{1}	p_{2}	p_{3}	variable		

WSAT Example

1		1		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied	candidates clauses	flipped nor flipping
	p_{1}	p_{2}	p_{3}	variable		

WSAT Example

1		1		1
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied clauses	candidates for flipping	flipped variable
no.	p_{1}	p_{2}	p_{3}			
1	0	0	1	$p_{1} \vee p_{2}$	p_{1}, p_{2}	p_{1}
2	1	0	1	$\begin{aligned} & \neg p_{1} \vee \neg p_{3} \\ & \neg p_{1} \vee p_{2} \end{aligned}$	p_{1}, p_{2}, p_{3}	p_{2}
3		1	1	$\begin{aligned} & \neg p_{2} \vee \neg p_{3} \\ & \neg p_{1} \vee \neg p_{3} \end{aligned}$	p_{1}, p_{2}, p_{3}	

WSAT Example

1		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied	candidates no.	flipped nor flipping
variable						

WSAT Example

1		1		0
p_{1}	\vee	$\neg p_{2}$	\vee	p_{3}
		$\neg p_{2}$	\vee	$\neg p_{3}$
$\neg p_{1}$			\vee	$\neg p_{3}$
$\neg p_{1}$	\vee	p_{2}		
p_{1}	\vee	p_{2}		

flip	interpretation			unsatisfied	candidates no.	flipped nor flipping
variable						

End of Lecture 9

Slides for lecture 9 end here ...

