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Random Clause Generation

How can one generate a random clause?

Let’s first generate a random literal.
A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.
I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?
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SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;
I 2-SAT is decidable in linear time;
I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.
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Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 32

This set of 13 clauses is unsatisfiable.
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Number of models: 3
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Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;

I Number k of literals per clause, so we will generate k -SAT
instances;

I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate

m[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.
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SAT

Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?
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Probability of Obtaining an Unsatisfiable Set
This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.

Crossover point: the value of r at which the probability crosses 0.5.
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ε-Window
Take a (small) number ε > 0. ε-window is the interval of values of r
where the probability is between ε and 1− ε.

For example, take ε = 0.1.
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Sharp Phase Transition
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Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: positive integer MAX-TRIES
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

return don’t know
end
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SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.
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Randomised Algorithms for SAT

I Choose a random interpretation.

I If this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.
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GSAT

procedure GSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
I = flip(I, p)
if I |= S then return I

return don’t know
end
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GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: integers MAX-TRIES, MAX-FLIPS

parameters:

real number 0 ≤ π ≤ 1 (probability of a sideways move),
begin

repeat MAX-TRIES times
I := random interpretation ;
if I |= S then return I
repeat MAX-FLIPS times
with probability π
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
with probability 1− π

randomly select p among all variables occurring in clauses false in I
I = flip(I, p) ;
if I |= S then return I

return don’t know
end
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procedure WSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
randomly select a clause C ∈ S such that I 6|= C
randomly select a variable p in C
I = flip(I, p)
if I |= S then return I

return don’t know
end
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