Outline

Satisfiability and Randomisation
Randomly Generated Clause Sets
Sharp Phase Transition
Randomised Algoritms for Satisfiability-Checking

Random Clause Generation

How can one generate a random clause?

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

» Fix a number n of boolean variables;

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

» Fix a number n of boolean variables;

» Select a literal among py, ..., P, —P1
probability.

gee ey

—pn with an equal

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.

» Fix a number n of boolean variables;

» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of a clause;

Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.
» Fix a number n of boolean variables;
» Select a literal among py, ..., pn, —pP1, . .., pPn With an equal
probability.
» Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

» SAT is NP-complete;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.
k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

» SAT is NP-complete;

» 2-SAT is decidable in linear time;

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.
k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

» SAT is NP-complete;

» 2-SAT is decidable in linear time;

» 3-SAT is NP-complete.

SAT and k-SAT

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of
length k.

» SAT is NP-complete;
» 2-SAT is decidable in linear time;
» 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

LiVIioVIigVig...

And replace it by two clauses:

LiVvioVvn
-nVizgVig...

where nis a new variable.

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

Number of models: 32

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

Number of models: 32

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24

Ps
0
1
0
1

P2 Ps Pa
0
0
0
0

P1
1
1
1
1

Ps
0
1
0
1

P2 P3P
0 O
0 o0
0 o
0 O

P1
0
0
0
0

Example (Obtained by a Program) forn=5and k =2
—P2 V 7p3
—P2 V Py

~—

~—

o

o

o

o

[eNoNeNoll .

~—

~—

OO OO OOOoOOo

Number of models: 24

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

—P2 V 7p3
—P2 V Py

[eNeNe)

o O o

OO+

o0+ +

— O OOoOOo

O+ +

- T

Number of models: 20

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2

Number of models: 20

Example (Obtained by a Program) forn=5and k =2

Ps Ps Ps P P2 P3s pPs Ps

P2

P1

O~ O O~ O +—~—0O+~ O

OO0+ T OO+ +— 0O+ +

OO0 O0OO0O+rrr+—rr~OO0Oo0OOo

[eNeoloNolNololNoNoll i s

Rl i i i ol el e

O~ O +—~0O+~ O+

OO+~ OO+~

[cNoNoNal S

[eleloleoloNoNoeNol

OO OO OOOoOOo

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

Number of models: 20

Example (Obtained by a Program) forn=5and k =2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12

Example (Obtained by a Program) forn=5and k =2

Pt P2 Ps Ps Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps

G G G G GGy kL ©
4 a2 a0000000O0R
CoO0O0O =22 a22000O0F
4~ 10022002200
4“0, 0202020 =0F

Number of models: 12

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

T 0 0 0 0

P2 Vs 1 0 0 0 1
P2V pi 1 0 0 1 0
“P2 V P2 1 0 0 1 1
p1V p 1 0 1 0 O
~Ps5 V Ps 1 0 1 0 1
P4V Ps 1 0 1 1 o0
10 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

11 0 1 1

Number of models: 12

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 Vs 1 0 0 0 1
P2V pi 1 0 0 1 o0
PV p2 1 0 0 1 A
PV pi
~Ps5 V Ps 1t 0 1 0 1
P4V Ps 1 0 1 1 o0

o
o
o o
- o
o =

Number of models: 9

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 Vs 1 0 0 0 1
P2V pi 1 0 0 1 o0
PV p2 1 0 0 1 A
PV pi
~Ps5 V Ps 1t 0 1 0 1
PV ps 1 0 1 1 0
—Ps V —Ps 1 0 1 1 1

o
o
o o
- o
o =

Number of models: 9

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 Vs 1 0 0 0 1
P2V pi 1 0 0 1 o0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
PaV Ps 1 0 1 1 0
—Ps5 V —p3

Number of models: 7

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps
P2 Vs 1 0 0 0 1
P2V pi 1 0 0 1 o0
“P2 V P2 1 0 0 1 1
PV pi
—Ps V Ps
PaV Ps 1 0 1 1 0
—Ps5 V —p3
P2V Py

Number of models: 7

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py

Number of models: 4

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2

Number of models: 4

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

sV —p2 1 1 0 O 1

Number of models: 3

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

ﬁgz x;ps 1 0 0 0 1
M2 1

P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps VvV p2

Number of models: 3

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

Number of models: 1

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2

PV pi

—Ps V Ps

PaV Ps

—Ps5 V —p3

P2V Py

Ps vV —p2

Ps VvV p2

—P1V P4

Number of models: 1

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2

Number of models: 1

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

:gz x;ps 1 0 0 0 1
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2
—p1V —Ps

Number of models: 1

Example (Obtained by a Program) forn=5and k =2

Pi P2 Ps Ps Ps5 Pi P2 Ps Ps+ Ps

—P2 V 7p3
—P2 V Py
P2V P2
PV pi
—Ps V Ps
PaV Ps
—Ps5 V —p3
P2V Py
Ps vV —p2
Ps VvV p2
—P1V P4
Ps V P2
—p1V —Ps

Number of models: 0
This set of 13 clauses is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

» Number n of boolean variables;

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:
» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of clauses.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of clauses.

Generate m clauses, each one has k literals randomly generated
among p1, ..., Pn, P1, - - -, Py With an equal probability.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:

» Number n of boolean variables;

» Number k of literals per clause, so we will generate k-SAT
instances;

» Number m of clauses.

Generate m clauses, each one has k literals randomly generated
among p1, ..., Pn, P1, - - -, Py With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.
Fix:
» Number n of boolean variables;
» Number k of literals per clause, so we will generate k-SAT
instances;
> . Real number r: ratio of clauses per
variable.

Generate [rn] clauses, each one has k literals randomly generated
among p1, ..., Pn, P1, - - -, Py With an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.

Roulette

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What would you bet on
if we generate 5
clauses?

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What would you bet on
if we generate 5
clauses?

» What would you bet on
if we generate 100
clauses?

SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

» What would you bet on
if we generate 5
clauses?

» What would you bet on
if we generate 100
clauses?

» What would you bet on
if we generate 15
clauses?

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.

w(r,80)
1.0

0:9 ‘//

0.8

0.7
0.6 /

0.5
/

0.3

0.2
0.1

3.0 3.5 4.0 4.5 5.0 55

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
Crossover point: the value of r at which the probability crosses 0.5.

w(r,80)
1.0

0.9 ‘//

0.8
0.7

0.6 /
0.5

/
0.3

0.2
0.1

3.0 3.5 4.0 4.5 5.0 55 6.0

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
Crossover point: the value of r at which the probability crosses 0.5.

w(r,80)
1.0
0.9 //
0.8
0.7

0.6 /
0.5
0.4
0.3

0.2
0.1

Tk Ny

3.0 3.5 4.0 4.5 5.0 5.5 6.0

e-Window

Take a (small) number ¢ > 0. e-window is the interval of values of r
where the probability is between ¢ and 1 — e.

e-Window

Take a (small) number ¢ > 0. e-window is the interval of values of r
where the probability is between ¢ and 1 — e.

For example, take ¢ = 0.1.

e-Window

Take a (small) number ¢ > 0. e-window is the interval of values of r
where the probability is between ¢ and 1 — e.

For example, take ¢ = 0.1.

w(r,80)
1.0

0.8

0.7
0.6 /

/

y /

0.3

O windan
0.2 U T=-windaow

0.1)
_’/

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Scaling Window Effect

200

160

140

120

100

80

n

0.01-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect

200

180

160

140

120

100

80

n

0.1-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect

200

180

160

140

120

100

80

n

0.01-window

0.1-window

3.5

4.0

4.5

5.0 5.5

Scaling Window Effect

n

200

0.01-window

160

0.1-window

140

120

100

80

3.5 4.0 4.5 5.0 55

Conjecture: for n — oo every e-window “degenerates into a point”.

Sharp Phase Transition

m(r,80)
1.0
0.9
0.8 n=200
0.7 =140
0.6 n==80
0.5
0.4
0.3
0.2
Ny /)
A

3.0 3.5 4.0

Easy-Hard-Easy Pattern

8000

7000

6000

5000

4000

3000

2000

1000

branches (backtracks)

/f'\ n =200
[
easy / E hard easy
1 NS
' __crossover point | |
3.0 3.5 20 45 5.0 5.5 6.0

End of Lecture 8

Slides for lecture 8 end here ...

Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know

Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times

end

Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: positive integer MAX-TRIES

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
return don’t know
end

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of

this problem.

Example: solvability of systems of linear inequalities over integers.
» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT is a decision problem:

» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT is a decision problem:

» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that / has a yes-answer.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT is a decision problem:
» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that / has a yes-answer.

Satisfiability has short witnesses: interpretations.

SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

» an instance in a system of linear inequalities;
» an answer is yes if it has a solution.

SAT is a decision problem:

» an instance is a finite set of clauses.
» it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that / has a yes-answer.
Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.

Randomised Algorithms for SAT

» Choose a random interpretation.

Randomised Algorithms for SAT

» Choose a random interpretation.

» [f this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

Randomised Algorithms for SAT

» Choose a random interpretation.
» [f this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

Randomised Algorithms for SAT

» Choose a random interpretation.
» [f this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flio(1,p)(q) = 4 1, if p=gqand I(p) =0;
0, if p=gqgand/(p)=1.

Randomised Algorithms for SAT

» Choose a random interpretation.

» [f this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flio(l,p)(q) = 1, if p=gqgand I(p) =0;
0, if p=gqgand/(p)=1.

In other words, the interpretation flip(/, p) is obtained from / by
changing its value on p.

GSAT

procedure GSAT(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know

GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /

end

GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
repeat MAX-FLIPS times
p := avariable such that flip(/, p) satisfies
the maximal number of clauses in S

I = flip(1, p)
if / = S then return /

return don’t know

end

GSAT Example

pi V. P2 V. p3

—p2 V. P

—p1 V. —ps3
PV P2

GSAT Example

0 0 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
PV P2
p1 VvV P2
flip | interpretation | satisfied clauses | candidates
no. | pr P2 pP3 p1 p2 ps | forflipping

flipped
variable

110 O 1 |4

GSAT Example

0 0 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
PV P2
p1 VvV P2
flip | interpretation | satisfied clauses | candidates
no. | pr P2 pP3 p1 p2 ps | forflipping

flipped
variable

110 O 11413 4 4

GSAT Example

0 1 1
pi V. —2p2 V. 3
P2 V. —p3
—P4 V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2

210 1 1

GSAT Example

0 1 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2

210 1 1 |4

GSAT Example

0 1 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2

2/0 1 1 14|13 4 4

GSAT Example

0 1 0
pi V. —2p2 V. 3
P2 V. —p3
—P4 V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2
2 0 1 1 4| 3 4 4 P2, P3 Ps3

0 1 0

GSAT Example

0 1 0
pi V. —2p2 V. 3
P2 V. —p3

—P4 V. —p3

-pr vV P2

Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2
2 0 1 1 4| 3 4 4 P2, P3 Ps3
3]0 1 0 |4

GSAT Example

0 1 0
pi V. —2p2 V. 3
P2 V. —p3

—P4 V. —p3

-pr vV P2

Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2
2 0 1 1 4| 3 4 4 P2, P3 Ps3
3]0 1 0 |4|5 4 4

GSAT Example

1 1 0
pi V. —2p2 V. 3
P2 V. —p3
—P4 V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2
2 0 1 1 4| 3 4 4 P2, P3 Ps3
3 0 1 0 4 5 4 4 P1 P1
1 1 0

GSAT Example

1 1 0
pi V. —2p2 V. 3
P2 V. —p3
—P4 V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pPs pi po ps | forflipping | variable
1 0 0 1 4 3 4 4 P2, P3 P2
2 0 1 1 4| 3 4 4 P2, P3 Ps3
3 0 1 0 4 5 4 4 P1 P1
1 1 0 |5

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
real number 0 < 7 < 1 (probability of a sideways move),

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
real number 0 < 7 < 1 (probability of a sideways move),

begin
repeat MAX-TRIES times
| := random interpretation ;

if / = S then return /

end

GSAT with Random Walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
real number 0 < 7 < 1 (probability of a sideways move),

begin
repeat MAX-TRIES times
| := random interpretation ;

if / = S then return /
repeat MAX-FLIPS times
with probability =
p := avariable such that flip(/, p) satisfies
the maximal number of clauses in S
with probability 1 — =
randomly select p among all variables occurring in clauses false in /
I = flip(/, p) ;
if / = S then return /
return don’t know
end

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /

end

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation / such that / = S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
| := random interpretation

if / = S then return /
repeat MAX-FLIPS times

randomly select a clause C € S such that / = C
randomly select a variable pin C
I = flip(1, p)
if / = S then return /

return don’t know

end

WSAT Example

pi V. P2 V. p3

—p2 V. P

—p1 V. —ps3
PV P2

WSAT Example

flip
no.

0 0 1
pi V. —2p2 V. 3
P2 V. —p3
P V. —p3
PV P2
p1 VvV P2
interpretation | unsatisfied | candidates
p1 P2 P3 clauses for flipping

flipped
variable

0 O 1

WSAT Example

0 0 1
pi V. —2p2 V. 3
—pP2 V. 3
P V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 P11V P2 P1, P2

WSAT Example

1 0 1
pi V. —2p2 V. 3
—pP2 V. 3
P V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 P11V P2 P1, P2 P

1 0 1

WSAT Example

1 0 1
pi V. —2p2 V. 3
—pP2 V. 3

P V. —p3

-pr vV P2

Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps

—P1V P2

WSAT Example

1

1

1

pi V. —2p2 V. 3
—pP2 V. 3
P V. —p3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps P2
—P1V P2

1 1 1

WSAT Example

1

1

1

pi V. —2p2 V. 3
P2 V. —p3
P4 V. P3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps P2
—P1V P2
3|1 1 1 | =p2V-ps | p1.P2,Ps

—P1V Ps3

WSAT Example

1 1 0
pi V. —2p2 V. 3
P2 V. —p3
P4 V. P3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps P2
—P1V P2
3|1 1 1 | =p2V-ps | p1.P2,Ps Ps

—P1V P3

WSAT Example

1 1 0
pi V. —2p2 V. 3
P2 V. —p3
P4 V. P3
-pr vV P2
Pt VvV P2
flip | interpretation | unsatisfied | candidates | flipped
no. | p1 P2 pPs clauses for flipping | variable
110 0 1 p1V P2 P1, P2 P
211 0 1 | =p1V-ps | Pp1,P2,Ps P2
—P1V P2
3|1 1 1 | =p2V-ps | p1.P2,Ps Ps

—P1V P3

End of Lecture 9

Slides for lecture 9 end here ...

	Satisfiability and Randomisation
	Randomly Generated Clause Sets
	Sharp Phase Transition
	Randomised Algoritms for Satisfiability-Checking

