Outline

Satisfiability and Randomisation

Randomly Generated Clause Sets Sharp Phase Transition Randomised Algoritms for Satisfiability-Checking

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How can one generate a random clause?

How can one generate a random clause? Let's first generate a random literal.

How can one generate a random clause? Let's first generate a random literal.

Fix a number *n* of boolean variables;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How can one generate a random clause? Let's first generate a random literal.

- Fix a number n of boolean variables;
- Select a literal among p₁,..., p_n, ¬p₁,..., ¬p_n with an equal probability.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How can one generate a random clause? Let's first generate a random literal.

A random clause is a collection of random literals.

- Fix a number *n* of boolean variables;
- Select a literal among p₁,..., p_n, ¬p₁,..., ¬p_n with an equal probability.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How can one generate a random clause? Let's first generate a random literal. A random clause is a collection of random literals.

- Fix a number n of boolean variables;
- Select a literal among p₁,..., p_n, ¬p₁,..., ¬p_n with an equal probability.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Fix the length *k* of a clause;

How can one generate a random clause? Let's first generate a random literal. A random clause is a collection of random literals.

- Fix a number n of boolean variables;
- Select a literal among p₁,..., p_n, ¬p₁,..., ¬p_n with an equal probability.
- ▶ Fix the length *k* of a clause;

Suppose we generate random clauses one after one. How does the set of models of this set change?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of length k.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of length k.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SAT is NP-complete;

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of length k.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- SAT is NP-complete;
- 2-SAT is decidable in linear time;

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of length k.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- SAT is NP-complete;
- 2-SAT is decidable in linear time;
- ▶ 3-SAT is NP-complete.

SAT is the problem of satisfiability checking for sets of clauses.

k-SAT is the problem of satisfiability checking for sets of clauses of length k.

- SAT is NP-complete;
- 2-SAT is decidable in linear time;
- ▶ 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas as used for generating short clausal forms (naming). Take a clause having more than 3 literals:

 $L_1 \vee L_2 \vee L_3 \vee L_4 \dots$

And replace it by two clauses:

```
L_1 \vee L_2 \vee n\neg n \vee L_3 \vee L_4 \dots
```

where *n* is a new variable.

p_1	p_2	p_3	p_4	p_5		p_1	p ₂	p_3	p_4	p_5
0	0	0	0	0	-	1	0	0	0	0
0	0	0	0	1		1	0	0	0	1
0	0	0	1	0		1	0	0	1	0
0	0	0	1	1		1	0	0	1	1
0	0	1	0	0		1	0	1	0	0
0	0	1	0	1		1	0	1	0	1
0	0	1	1	0		1	0	1	1	0
0	0	1	1	1		1	0	1	1	1
0	1	0	0	0		1	1	0	0	0
0	1	0	0	1		1	1	0	0	1
0	1	0	1	0		1	1	0	1	0
0	1	0	1	1		1	1	0	1	1
0	1	1	0	0		1	1	1	0	0
0	1	1	0	1		1	1	1	0	1
0	1	1	1	0		1	1	1	1	0
0	1	1	1	1		1	1	1	1	1

p_1	p_2	p_3	p_4	p 5	p_1	p 2	p_3	p_4	p 5
0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	0	1	1	1	1	0	1
0	1	1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1

 $\neg p_2 \lor \neg p_3$

p_1	p 2	p_3	p_4	p_5	p_1	p_2	p 3	p_4	p_5
0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	0	1	1	1	1	0	1	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\neg p_2 \lor \neg p_3$

	p_1	p_2	p 3	p_4	p 5	p_1	p 2	p 3	p_4	p 5
∕ ¬ p 3	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
/ p ₁	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
	0	1	0	0	0	1	1	0	0	0
	0	1	0	0	1	1	1	0	0	1
	0	1	0	1	0	1	1	0	1	0
	0	1	0	1	1	1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $\neg p_2 \lor \neg p_3 \\ \neg p_2 \lor p_1$

	p_1	p_2	p 3	p_4	p 5	p_1	p 2	p 3	p_4	p_5
$\neg p_2 \lor \neg p_3$	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
$\neg p_2 \lor p_1$	0	0	0	1	0	1	0	0	1	0
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Number of models: 20

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p 3	p_4	p_5
$\neg p_2 \lor \neg p_3$	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	1	1	0	0	0	1
$\neg p_2 \lor p_1$	0	0	0	1	0	1	0	0	1	0
$\neg p_2 \lor p_2$	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	0
	0	0	1	0	1	1	0	1	0	1
	0	0	1	1	0	1	0	1	1	0
	0	0	1	1	1	1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Number of models: 20

	p_1	p_2	p_3	p_4	p_5		p_1	p_2	p_3	p_4	p_5
$\neg n_2 \setminus \neg n_2$	0	0	0	0	0	-	1	0	0	0	0
$\neg p_2 \lor \neg p_3$	0	0	0	0	1		1	0	0	0	1
$\neg p_2 \lor p_1$	0	0	0	1	0		1	0	0	1	0
$\neg p_2 \lor p_2$	0	0	0	1	1		1	0	0	1	1
$p_1 \lor p_1$	0	0	1	0	0		1	0	1	0	0
	0	0	1	0	1		1	0	1	0	1
	0	0	1	1	0		1	0	1	1	0
	0	0	1	1	1		1	0	1	1	1
							1	1	0	0	0
							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p 5
$\neg n_{0} \setminus \langle \neg n_{0} \rangle$						1	0	0	0	0
$\neg p_2 \lor \neg p_3$						1	0	0	0	1
$\neg p_2 \lor p_1$						1	0	0	1	0
$\neg p_2 \lor p_2$						1	0	0	1	1
$p_1 \vee p_1$						1	0	1	0	0
						1	0	1	0	1
						1	0	1	1	0
						1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	p_1	p_2	p_3	p_4	p 5	p_1	p_2	p_3	p_4	p_5
$\neg n_{2} \setminus \neg n_{2}$						1	0	0	0	0
$\neg p_2 \lor \neg p_3$						1	0	0	0	1
$\neg p_2 \lor p_1$						1	0	0	1	0
$\neg p_2 \lor p_2$						1	0	0	1	1
$p_1 \lor p_1$						1	0	1	0	0
$ eg p_5 \lor p_5$						1	0	1	0	1
						1	0	1	1	0
						1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	p_1	p 2	p_3	p_4	p 5	p_1	p_2	p_3	p_4	p 5
$\neg n_{0} \vee \neg n_{0}$						1	0	0	0	0
$\neg p_2 \lor \neg p_3$						1	0	0	0	1
$\neg p_2 \lor p_1$						1	0	0	1	0
$\neg p_2 \lor p_2$						1	0	0	1	1
$p_1 \lor p_1$						1	0	1	0	0
$ eg p_5 \lor p_5$						1	0	1	0	1
$\pmb{p_4} ee \pmb{p_5}$						1	0	1	1	0
						1	0	1	1	1
						1	1	0	0	0
						1	1	0	0	1
						1	1	0	1	0
						1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	<i>p</i> ₁	p 2	p 3	p 4	p 5	<i>p</i> ₁	p 2	p 3	p 4	p 5
$ egreen p_2 \lor \neg p_3$ $ egreen \rho_2 \lor p_1$ $ egreen \rho_2 \lor p_2$ $ p_1 \lor p_1$						1 1 1	0 0 0	0 0 0	0 1 1	1 0 1
$ eg p_5 \lor p_5 \ p_4 \lor p_5$						1 1 1	0 0 0	1 1 1	0 1 1	1 0 1
						1 1	1 1	0 0	0 1	1 0

1 1 0 1 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	<i>p</i> ₁	<i>p</i> ₂	p 3	p 4	p 5	<i>p</i> ₁	<i>p</i> ₂	p 3	p 4	p 5
$ egreen p_2 \lor \neg p_3 \\ egreen \neg p_2 \lor p_1 \\ egreen \neg p_2 \lor p_2 \\ p_1 \lor p_1 $						1 1 1	0 0 0	0 0 0	0 1 1	1 0 1
$ eg p_5 \lor p_5$						1	0	1	0	1
$p_4 \lor p_5$						1	0	1	1	0
$\neg p_5 \lor \neg p_3$						1	0	1	1	1
						1	1	0 0	0	1 0
						1	1	0	1	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	<i>p</i> ₁	p ₂	p 3	p 4	p 5	<i>p</i> ₁	p 2	p 3	p 4	p 5
$ egin{aligned} equal p_2 ⅇ \neg p_3 \\ egin{aligned} equal p_2 ⅇ p_1 \\ egin{aligned} egin{aligne$						1 1 1	0 0 0	0 0 0	0 1 1	1 0 1
$p_4 \lor p_5$ $\neg p_5 \lor \neg p_3$						1	0	1	1	0
						1	1	0	0	1
						1	1	0 0	1	0 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	p 1	p ₂	p 3	p 4	p 5	<i>p</i> ₁	p 2	p 3	p 4	p 5
$ egin{aligned} equal p_2 ⅇ \neg p_3 \\ egin{aligned} equal p_2 ⅇ p_1 \\ egin{aligned} egin{aligne$						1 1 1	0 0 0	0 0 0	0 1 1	1 0 1
$p_4 \lor p_5$ $\neg p_5 \lor \neg p_3$						1	0	1	1	0
$p_2 \vee \neg p_4$						1	1	0	0	1
						1 1	1 1	0 0	1 1	0 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	<i>p</i> ₁	p ₂	p 3	p 4	p 5	<i>p</i> 1	p ₂	p 3	p 4	p 5
$\neg p_2 \lor \neg p_3$ $\neg p_2 \lor p_1$ $\neg p_2 \lor p_2$ $p_1 \lor p_1$ $\neg p_5 \lor p_5$ $p_4 \lor p_5$ $\neg p_5 \lor \neg p_3$						1	0	0	0	1
$p_2 \vee \neg p_4$						1 1 1	1 1 1	0 0 0	0 1 1	1 0 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	p_1	<i>p</i> ₂	p 3	p 4	p 5	<i>p</i> ₁	p 2	p 3	p 4	p 5
$ eg p_2 \lor \neg p_3 \ eg p_2 \lor p_1$						1	0	0	0	1
$ eg p_2 \lor p_2$										
$egin{array}{lll} eta_1 ee eta_1 & egthinspace & egthinspac$										
$p_4 \vee p_5$										
$ eg p_5 \lor eg p_3 \ p_2 \lor eg p_4$										
$p_5 \lor \neg p_2$						1 1	1 1	0 0	0 1	1 0
						1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	<i>p</i> ₁	<i>p</i> ₂	p 3	p 4	p 5	<i>p</i> 1	p ₂	p 3	p 4	p 5
$ egin{aligned} equal p_2 ⅇ \neg p_3 \\ egin{aligned} egin$						1	0	0	0	1
$ \begin{array}{c} \neg p_5 \lor \neg p_3 \\ p_2 \lor \neg p_4 \\ p_5 \lor \neg p_2 \end{array} $						1	1	0	0	1
						1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	<i>p</i> ₁	p ₂	p 3	p 4	p 5	p 1	p 2	p 3	p 4	p 5
$ eg p_2 \lor \neg p_3 onumber \ eg p_2 \lor p_1 onumber \ eg p_2 \lor p_2$						1	0	0	0	1
$egin{array}{lll} egin{array}{lll} egin{array}{lll} eta_1 & & onumber \ onumber \$										
$ egreen p_5 \lor \neg p_3 \ p_2 \lor \neg p_4 \ p_5 \lor \neg p_2$						1	1	0	0	1
$p_5 \lor p_2$						1	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	p_1	p ₂	p 3	p_4	p 5	<i>p</i> ₁	p 2	p 3	p_4	p 5
$\neg p_2 \lor \neg p_3$ $\neg p_2 \lor p_1$ $\neg p_2 \lor p_2$ $p_1 \lor p_1$ $\neg p_5 \lor p_5$ $p_4 \lor p_5$ $\neg p_5 \lor \neg p_3$ $p_2 \lor \neg p_4$ $p_5 \lor \neg p_2$ $p_5 \lor p_2$						1	0	0	0	1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	<i>p</i> 1	p ₂	p 3	p 4	p 5	-	<i>p</i> ₁	p ₂	p 3	p 4	p 5
$\neg p_2 \lor \neg p_3$							1	0	0	0	1
$ eg p_2 \lor p_1 \ eg p_2 \lor p_2$											
$p_1 \vee p_1$											
$ eg p_5 \lor p_5 \ p_4 \lor p_5$											
$ eg p_5 \lor eg p_3$											
$p_2 \lor \neg p_4 \ p_5 \lor \neg p_2$											
$p_5 \lor p_2$ $p_5 \lor p_2$											
$\neg p_1 \lor \neg p_4$											

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	<i>p</i> ₁	p ₂	p 3	p 4	p 5	_	<i>p</i> ₁	p ₂	p 3	p 4	p 5
$\neg p_2 \lor \neg p_3$							1	0	0	0	1
$\neg p_2 \lor p_1$							1	0	0	0	
$\neg p_2 \lor p_2$											
$p_1 \lor p_1$											
$ eg p_5 \lor p_5$											
$p_4 \lor p_5$											
$\neg p_5 \lor \neg p_3$											
$p_2 \vee \neg p_4$											
$p_5 \lor \neg p_2$											
$p_5 \vee p_2$											
$\neg p_1 \lor \neg p_4$											
$p_5 \vee p_2$											

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	<i>p</i> 1	p 2	p 3	p 4	p 5	<i>p</i> ₁	p 2	p 3	p 4	p 5
$\neg p_2 \lor \neg p_3$										
$ eg p_2 \lor p_1$										
$ eg p_2 \lor p_2$										
$p_1 \lor p_1$										
$ eg p_5 \lor p_5$										
$p_4 \lor p_5$										
$ eg p_5 \lor eg p_3$										
$p_2 \lor \neg p_4$										
$p_5 \lor \neg p_2$										
$p_5 \lor p_2$										
$ eg p_1 \lor eg p_4$										
$p_5 \lor p_2$										
$ eg p_1 \lor eg p_5$										

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Number of models: 0 This set of 13 clauses is unsatisfiable.

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fix:

Number n of boolean variables;

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Number *m* of clauses.

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number *m* of clauses.

Generate *m* clauses, each one has *k* literals randomly generated among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability.

(ロ) (同) (三) (三) (三) (○) (○)

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- Number *m* of clauses.

Generate *m* clauses, each one has *k* literals randomly generated among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability.

Note that the probability is a monotone function: the more clauses we generate, the higher chance we have that the set is unsatisfiable.

We are interested in the probability that a set of clauses of a given size is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number k of literals per clause, so we will generate k-SAT instances;
- ► Number *m* of clauses. Real number *r*: ratio of clauses per variable.

Generate [*rn*] clauses, each one has *k* literals randomly generated among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability.

Note that the probability is a monotone function: the more clauses we generate, the higher chance we have that the set is unsatisfiable.

Roulette

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

We will generate random instances of 2-SAT with 5-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.

・ コット (雪) (小田) (コット 日)

We will generate random instances of 2-SAT with 5-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.

What would you bet on if we generate 5 clauses?

We will generate random instances of 2-SAT with 5-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.

- What would you bet on if we generate 5 clauses?
- What would you bet on if we generate 100 clauses?

・ コット (雪) (小田) (コット 日)

We will generate random instances of 2-SAT with 5-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.

- What would you bet on if we generate 5 clauses?
- What would you bet on if we generate 100 clauses?
- What would you bet on if we generate 15 clauses?

・ コット (雪) (小田) (コット 日)

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set.

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set. Crossover point: the value of r at which the probability crosses 0.5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Probability of Obtaining an Unsatisfiable Set

This probablity is a monotone function: the more clauses we generate, the higher chance to obtain an unsatisfiable set. Crossover point: the value of r at which the probability crosses 0.5.

$\epsilon\text{-Window}$

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$\epsilon\text{-Window}$

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

For example, take $\epsilon = 0.1$.

$\epsilon\text{-Window}$

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

For example, take $\epsilon = 0.1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conjecture: for $n \to \infty$ every ϵ -window "degenerates into a point".

æ

Sharp Phase Transition

Easy-Hard-Easy Pattern

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

End of Lecture 8

Slides for lecture 8 end here ...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

procedure CHAOS(S)input: set of clauses S output: interpretation I such that $I \models S$ or don't know

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

procedure CHAOS(S) input: set of clauses S output: interpretation I such that $I \models S$ or don't know parameters: positive integer MAX-TRIES begin repeat MAX-TRIES times

end

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

procedure CHAOS(S)

input: set of clauses S

output: interpretation / such that $I \models S$ or *don't know*

parameters: positive integer MAX-TRIES

begin

repeat MAX-TRIES times

I := random interpretation

```
\underline{if} \mid = S \underline{then} \underline{return} \mid
```

return don't know

end

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

(ロ) (同) (三) (三) (三) (○) (○)

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

(ロ) (同) (三) (三) (三) (○) (○)

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any problem on any infinite domain, that has a yes-no answer. Each element of this domain is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.

Randomised Algorithms for SAT

• Choose a random interpretation.

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The flipped variables are chosen using heuristics or randomly, or both.

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I, p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I, p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In other words, the interpretation flip(I, p) is obtained from *I* by changing its value on *p*.

procedure GSAT(S)input: set of clauses S output: interpretation / such that $I \models S$ or don't know

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

procedure GSAT(S)input: set of clauses S output: interpretation / such that $I \models S$ or don't know parameters: integers MAX-TRIES, MAX-FLIPS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

procedure GSAT(S)input: set of clauses Soutput: interpretation I such that $I \models S$ or don't know parameters: integers MAX-TRIES, MAX-FLIPS begin repeat MAX-TRIES times

(日)

- *I* := random interpretation
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

end

procedure GSAT(S)

input: set of clauses S

output: interpretation I such that $I \models S$ or *don't know*

parameters: integers MAX-TRIES, MAX-FLIPS

begin

repeat MAX-TRIES times

- *I* := random interpretation
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

repeat MAX-FLIPS times

p := a variable such that flip(I, p) satisfies the maximal number of clauses in S

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

I = flip(I, p)

```
if l \models S then return l
```

return don't know

end

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

flip	inte	interpretation			tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		p 1	p 2	p 3	for flipping	variable
1	0	0	1	4					

flip	inte	interpretation			tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	p 2	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4		

flip	inte	interpretation			tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	p 2
2	0	1	1						

	flip	inte	interpretation			tisfie	d clau	ises	candidates	flipped
	no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
_	1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	p 2
	2	0	1	1	4					

flip	inte	interpretation			tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4		

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p 3
3	0	1	0						

flip	interpretation			sat	tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4					

flip	interpretation			sa	tisfie	d clau	lses	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4		

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	<i>p</i> 1	p_1
	1	1	0						

flip	interpretation			sat	tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3		<i>p</i> ₁	p 2	p 3	for flipping	variable
1	0	0	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	<i>p</i> ₂
2	0	1	1	4	3	4	4	<i>p</i> ₂ , <i>p</i> ₃	p 3
3	0	1	0	4	5	4	4	<i>p</i> 1	p 1
	1	1	0	5					

procedure GSATwithWalks(S)

input: set of clauses *S* **output**: interpretation *I* such that $I \models S$ or *don't know*

procedure GSATwithWalks(S)

input: set of clauses Soutput: interpretation / such that $I \models S$ or don't know parameters: integers MAX-TRIES, MAX-FLIPS

real number $0 \le \pi \le 1$ (probability of a sideways move),

procedure GSATwithWalks(S)

input: set of clauses S

output: interpretation *I* such that $I \models S$ or *don't know*

parameters: integers MAX-TRIES, MAX-FLIPS

real number $0 \le \pi \le 1$ (probability of a sideways move),

(ロ) (同) (三) (三) (三) (○) (○)

begin

repeat MAX-TRIES times

- *I* := random interpretation ;
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

```
procedure GSATwithWalks(S)
```

input: set of clauses S

output: interpretation / such that $I \models S$ or *don't know*

parameters: integers MAX-TRIES, MAX-FLIPS

real number $0 \le \pi \le 1$ (probability of a sideways move),

begin

repeat MAX-TRIES times

- *I* := random interpretation ;
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

repeat MAX-FLIPS times

with probability π

p := a variable such that flip(I, p) satisfies the maximal number of clauses in S

```
with probability 1 - \pi
```

randomly select p among all variables occurring in clauses false in I

I = flip(I, p);

 $\underline{if} \mid = S \underline{then} \underline{return} \mid$

return don't know

end

WSAT

procedure WSAT(S)input: set of clauses S output: interpretation / such that $I \models S$ or don't know parameters: integers MAX-TRIES, MAX-FLIPS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation *I* such that $I \models S$ or *don't know*

(日)

parameters: integers MAX-TRIES, MAX-FLIPS

begin

repeat MAX-TRIES times

- *I* := random interpretation
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

end

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation I such that $I \models S$ or *don't know*

parameters: integers MAX-TRIES, MAX-FLIPS

begin

repeat MAX-TRIES times

- *I* := random interpretation
- $\underline{if} \mid = S \underline{then} \underline{return} \mid$

repeat MAX-FLIPS times

randomly select a clause $C \in S$ such that $I \not\models C$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

randomly select a variable p in C

I = flip(I, p)

if $l \models S$ then return l

return don't know

end

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

flip	interpretation		ation	unsatisfied	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3	clauses	for flipping	variable
1	0	0	1			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	$p_2 p_3$		clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	

	flip	interpretation			unsatisfied	candidates	flipped
	no.	<i>p</i> 1	<i>p</i> ₂	p 3	clauses	for flipping	variable
	1	0	0	1	$p_1 \lor p_2$	<i>p</i> ₁ , <i>p</i> ₂	<i>p</i> ₁
-	2	1	0	1			
-							
-							

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	<i>p</i> ₂	p 3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	
				$ eg p_1 \lor p_2$		

flip	inte	rpreta	ation	unsatisfied	candidates	flipped
no.	<i>p</i> 1	<i>p</i> ₂	p 3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p 2
				$\neg p_1 \lor p_2$		
3	1	1	1			
						1

flip	5	interpretation			unsatisfied	candidates	flipped
no	.	p 1	p 2	p 3	clauses	for flipping	variable
1	1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	<i>p</i> ₁
2	2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₂
					$\neg p_1 \lor p_2$		
3	3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	
					$\neg p_1 \lor \neg p_3$		

fli	ip	interpretation			unsatisfied	candidates	flipped
n	o.	<i>p</i> ₁	p 2	p 3	clauses	for flipping	variable
	1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	p_1
	2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₂
					$\neg p_1 \lor p_2$		
	3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	ρ_3
					$\neg p_1 \lor \neg p_3$		
		1	1	0			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

flip	5	interpretation			unsatisfied	candidates	flipped
no).	<i>p</i> ₁	p 2	p 3	clauses	for flipping	variable
	1	0	0	1	$p_1 \vee p_2$	<i>p</i> ₁ , <i>p</i> ₂	p_1
	2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₂
					$\neg p_1 \lor p_2$		
:	3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
					$\neg p_1 \lor \neg p_3$		
		1	1	0			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

End of Lecture 9

Slides for lecture 9 end here ...

