
Outline

Satisfiability and Randomisation
Randomly Generated Clause Sets
Sharp Phase Transition
Randomised Algoritms for Satisfiability-Checking



Random Clause Generation

How can one generate a random clause?

Let’s first generate a random literal.
A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.
I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.
I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

A random clause is a collection of random literals.

I Fix a number n of boolean variables;

I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal
probability.

I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.

A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.

I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.

I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.
I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal.
A random clause is a collection of random literals.

I Fix a number n of boolean variables;
I Select a literal among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal

probability.
I Fix the length k of a clause;

Suppose we generate random clauses one after one. How does the
set of models of this set change?



SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;
I 2-SAT is decidable in linear time;
I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.



SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;

I 2-SAT is decidable in linear time;
I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.



SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;
I 2-SAT is decidable in linear time;

I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.



SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;
I 2-SAT is decidable in linear time;
I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.



SAT and k -SAT
SAT is the problem of satisfiability checking for sets of clauses.
k -SAT is the problem of satisfiability checking for sets of clauses of
length k .

I SAT is NP-complete;
I 2-SAT is decidable in linear time;
I 3-SAT is NP-complete.

There is a simple reduction of SAT to 3-SAT based on the same ideas
as used for generating short clausal forms (naming). Take a clause
having more than 3 literals:

L1 ∨ L2 ∨ L3 ∨ L4 . . .

And replace it by two clauses:

L1 ∨ L2 ∨ n
¬n ∨ L3 ∨ L4 . . .

where n is a new variable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 32

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3

¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 32

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3

¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1

0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 24

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1

¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1

0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 24

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1

¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 20

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2

p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 20

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1

¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 20

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1

¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 12

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5

p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 12

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5

¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 12

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5

¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1
1 0 0 1 0
1 0 0 1 1

1 0 1 0 0

1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 9

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3

p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1
1 0 0 1 0
1 0 0 1 1

1 0 1 0 0

1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 9

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3

p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1
1 0 0 1 0
1 0 0 1 1

1 0 1 0 0
1 0 1 0 1

1 0 1 1 0

1 0 1 1 1
1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 7

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4

p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1
1 0 0 1 0
1 0 0 1 1

1 0 1 0 0
1 0 1 0 1

1 0 1 1 0

1 0 1 1 1
1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 7

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4

p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 4

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2

p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0

1 1 0 0 1
1 1 0 1 0
1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 4

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2

p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 3

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2

¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 3

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2

¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 1

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4

p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 1

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2

¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 1

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 1

This set of 13 clauses is unsatisfiable.



Example (Obtained by a Program) for n = 5 and k = 2

¬p2 ∨ ¬p3
¬p2 ∨ p1
¬p2 ∨ p2
p1 ∨ p1
¬p5 ∨ p5
p4 ∨ p5
¬p5 ∨ ¬p3
p2 ∨ ¬p4
p5 ∨ ¬p2
p5 ∨ p2
¬p1 ∨ ¬p4
p5 ∨ p2
¬p1 ∨ ¬p5

p1 p2 p3 p4 p5

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

p1 p2 p3 p4 p5

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Number of models: 0
This set of 13 clauses is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;

I Number k of literals per clause, so we will generate k -SAT
instances;

I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate

m[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;

I Number k of literals per clause, so we will generate k -SAT
instances;

I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate

m[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;
I Number k of literals per clause, so we will generate k -SAT

instances;

I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate

m[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;
I Number k of literals per clause, so we will generate k -SAT

instances;
I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate

m[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;
I Number k of literals per clause, so we will generate k -SAT

instances;
I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate m

[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;
I Number k of literals per clause, so we will generate k -SAT

instances;
I Number m of clauses.

Real number r : ratio of clauses per
variable.

Generate m

[rn]

clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



Random Clause Generation

We are interested in the probability that a set of clauses of a given
size is unsatisfiable.

Fix:

I Number n of boolean variables;
I Number k of literals per clause, so we will generate k -SAT

instances;
I Number m of clauses. Real number r : ratio of clauses per

variable.

Generate

m

[rn] clauses, each one has k literals randomly generated
among p1, . . . ,pn,¬p1, . . . ,¬pn with an equal probability.

Note that the probability is a monotone function: the more clauses we
generate, the higher chance we have that the set is unsatisfiable.



SAT

Roulette

We will generate random
instances of 2-SAT with
5-variables.

You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?



SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.
You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?



SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.
You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?



SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.
You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?



SAT Roulette

We will generate random
instances of 2-SAT with
5-variables.
You will bet on whether the
resuting set of clauses is
satisfiable or not.

I What would you bet on
if we generate 5
clauses?

I What would you bet on
if we generate 100
clauses?

I What would you bet on
if we generate 15
clauses?



Probability of Obtaining an Unsatisfiable Set
This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.

Crossover point: the value of r at which the probability crosses 0.5.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)



Probability of Obtaining an Unsatisfiable Set
This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
Crossover point: the value of r at which the probability crosses 0.5.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)



Probability of Obtaining an Unsatisfiable Set
This probablity is a monotone function: the more clauses we
generate, the higher chance to obtain an unsatisfiable set.
Crossover point: the value of r at which the probability crosses 0.5.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)

crossover point



ε-Window
Take a (small) number ε > 0. ε-window is the interval of values of r
where the probability is between ε and 1− ε.

For example, take ε = 0.1.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)

0.1-window



ε-Window
Take a (small) number ε > 0. ε-window is the interval of values of r
where the probability is between ε and 1− ε.

For example, take ε = 0.1.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)

0.1-window



ε-Window
Take a (small) number ε > 0. ε-window is the interval of values of r
where the probability is between ε and 1− ε.

For example, take ε = 0.1.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)

0.1-window



Scaling Window Effect

80

100

120

140

160

180

200

3.5 4.0 4.5 5.0 5.5

r

n

0.01-window

0.1-window

Conjecture: for n→∞ every ε-window “degenerates into a point”.



Scaling Window Effect

80

100

120

140

160

180

200

3.5 4.0 4.5 5.0 5.5

r

n

0.01-window

0.1-window

Conjecture: for n→∞ every ε-window “degenerates into a point”.



Scaling Window Effect

80

100

120

140

160

180

200

3.5 4.0 4.5 5.0 5.5

r

n

0.01-window

0.1-window

Conjecture: for n→∞ every ε-window “degenerates into a point”.



Scaling Window Effect

80

100

120

140

160

180

200

3.5 4.0 4.5 5.0 5.5

r

n

0.01-window

0.1-window

Conjecture: for n→∞ every ε-window “degenerates into a point”.



Sharp Phase Transition

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

π(r , 80)

n = 80
n = 140
n = 200



Easy-Hard-Easy Pattern

1000

2000

3000

4000

5000

6000

7000

8000

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

branches (backtracks)

n = 200

easy easyhard

crossover point



End of Lecture 8

Slides for lecture 8 end here . . .



Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: positive integer MAX-TRIES
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

return don’t know
end



Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: positive integer MAX-TRIES
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

return don’t know
end



Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: positive integer MAX-TRIES
begin

repeat MAX-TRIES times

I := random interpretation
if I |= S then return I

return don’t know

end



Satisfiability-Checking Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: positive integer MAX-TRIES
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

return don’t know
end



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



SAT as a Decision Problem

Decision problem: any problem on any infinite domain, that has a
yes-no answer. Each element of this domain is called an instance of
this problem.

Example: solvability of systems of linear inequalities over integers.

I an instance in a system of linear inequalities;
I an answer is yes if it has a solution.

SAT is a decision problem:

I an instance is a finite set of clauses.
I it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can
check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Unsatisfiability has no polynomial-size witnesses, unless NP = coNP.



Randomised Algorithms for SAT

I Choose a random interpretation.

I If this interpretation is not a model, repeatedly choose a variable
and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.



Randomised Algorithms for SAT

I Choose a random interpretation.
I If this interpretation is not a model, repeatedly choose a variable

and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.



Randomised Algorithms for SAT

I Choose a random interpretation.
I If this interpretation is not a model, repeatedly choose a variable

and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.



Randomised Algorithms for SAT

I Choose a random interpretation.
I If this interpretation is not a model, repeatedly choose a variable

and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.



Randomised Algorithms for SAT

I Choose a random interpretation.
I If this interpretation is not a model, repeatedly choose a variable

and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or
both.

flip(I,p)(q) =

 I(q), if p 6= q;
1, if p = q and I(p) = 0;
0, if p = q and I(p) = 1.

In other words, the interpretation flip(I,p) is obtained from I by
changing its value on p.



GSAT

procedure GSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
I = flip(I, p)
if I |= S then return I

return don’t know
end



GSAT

procedure GSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
I = flip(I, p)
if I |= S then return I

return don’t know
end



GSAT

procedure GSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

repeat MAX-FLIPS times
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
I = flip(I, p)
if I |= S then return I

return don’t know

end



GSAT

procedure GSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
I = flip(I, p)
if I |= S then return I

return don’t know
end



GSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4

3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4

3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4

p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 1 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1

4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 1 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4

3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 1 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4

p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT Example

0 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0

4 5 4 4 p1 p1
1 1 0 5



GSAT Example

0 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4

5 4 4 p1 p1
1 1 0 5



GSAT Example

0 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4

p1 p1
1 1 0 5



GSAT Example

1 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0

5



GSAT Example

1 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation satisfied clauses candidates flipped
no. p1 p2 p3 p1 p2 p3 for flipping variable

1 0 0 1 4 3 4 4 p2,p3 p2
2 0 1 1 4 3 4 4 p2,p3 p3
3 0 1 0 4 5 4 4 p1 p1

1 1 0 5



GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know

parameters: integers MAX-TRIES, MAX-FLIPS

parameters:

real number 0 ≤ π ≤ 1 (probability of a sideways move),
begin

repeat MAX-TRIES times
I := random interpretation ;
if I |= S then return I
repeat MAX-FLIPS times
with probability π
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
with probability 1− π

randomly select p among all variables occurring in clauses false in I
I = flip(I, p) ;
if I |= S then return I

return don’t know
end



GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

parameters:

real number 0 ≤ π ≤ 1 (probability of a sideways move),

begin
repeat MAX-TRIES times
I := random interpretation ;
if I |= S then return I
repeat MAX-FLIPS times
with probability π
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
with probability 1− π

randomly select p among all variables occurring in clauses false in I
I = flip(I, p) ;
if I |= S then return I

return don’t know
end



GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

parameters:

real number 0 ≤ π ≤ 1 (probability of a sideways move),
begin

repeat MAX-TRIES times
I := random interpretation ;
if I |= S then return I

repeat MAX-FLIPS times
with probability π
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
with probability 1− π

randomly select p among all variables occurring in clauses false in I
I = flip(I, p) ;
if I |= S then return I

return don’t know

end



GSAT with Random Walks

procedure GSATwithWalks(S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

parameters:

real number 0 ≤ π ≤ 1 (probability of a sideways move),
begin

repeat MAX-TRIES times
I := random interpretation ;
if I |= S then return I
repeat MAX-FLIPS times
with probability π
p := a variable such that flip(I, p) satisfies

p :=

the maximal number of clauses in S
with probability 1− π

randomly select p among all variables occurring in clauses false in I
I = flip(I, p) ;
if I |= S then return I

return don’t know
end



WSAT

procedure WSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
randomly select a clause C ∈ S such that I 6|= C
randomly select a variable p in C
I = flip(I, p)
if I |= S then return I

return don’t know
end



WSAT

procedure WSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I

repeat MAX-FLIPS times
randomly select a clause C ∈ S such that I 6|= C
randomly select a variable p in C
I = flip(I, p)
if I |= S then return I

return don’t know

end



WSAT

procedure WSAT (S)

input: set of clauses S
output: interpretation I such that I |= S or don’t know
parameters: integers MAX-TRIES, MAX-FLIPS
begin

repeat MAX-TRIES times
I := random interpretation
if I |= S then return I
repeat MAX-FLIPS times
randomly select a clause C ∈ S such that I 6|= C
randomly select a variable p in C
I = flip(I, p)
if I |= S then return I

return don’t know
end



WSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1

p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1

p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

0 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2

p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1

¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 0 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3

p2

¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 1 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1

¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 1 1
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3

p3

¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



WSAT Example

1 1 0
p1 ∨ ¬p2 ∨ p3

¬p2 ∨ ¬p3
¬p1 ∨ ¬p3
¬p1 ∨ p2

p1 ∨ p2

flip interpretation unsatisfied candidates flipped
no. p1 p2 p3 clauses for flipping variable

1 0 0 1 p1 ∨ p2 p1,p2 p1

2 1 0 1 ¬p1 ∨ ¬p3 p1,p2,p3 p2
¬p1 ∨ p2

3 1 1 1 ¬p2 ∨ ¬p3 p1,p2,p3 p3
¬p1 ∨ ¬p3

1 1 0



End of Lecture 9

Slides for lecture 9 end here . . .


	Satisfiability and Randomisation
	Randomly Generated Clause Sets
	Sharp Phase Transition
	Randomised Algoritms for Satisfiability-Checking


