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A Puzzle

Isaac and Albert were excitedly describing the result of the Third
Annual International Science Fair Extravaganza in Sweden. There
were three contestants, Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second.
Albert, on the other hand, reported that Johannes won the fair, while
Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the
results of the science fair. Each of them had given one true statement
and one false statement. What was the actual placing of the three
contestants?

How can we solve this kind of puzzle?
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Propositional Satisfiability Problem

Given a propositional formula A, check whether it is satisfiable or
unsatisfiable.

If A is satisfiable, we also want to find a satisfying assignment for A,
that is, a model of A.

It is one of the most famous combinatorial problems in computer
science.

It is a very hard problem with a surprisingly large number of practical
applications.

It is also the first ever problem to be proved NP-complete.



Propositional Satisfiability Problem

Given a propositional formula A, check whether it is satisfiable or
unsatisfiable.

If A is satisfiable, we also want to find a satisfying assignment for A,
that is, a model of A.

It is one of the most famous combinatorial problems in computer
science.

It is a very hard problem with a surprisingly large number of practical
applications.

It is also the first ever problem to be proved NP-complete.



Propositional Satisfiability Problem

Given a propositional formula A, check whether it is satisfiable or
unsatisfiable.

If A is satisfiable, we also want to find a satisfying assignment for A,
that is, a model of A.

It is one of the most famous combinatorial problems in computer
science.

It is a very hard problem with a surprisingly large number of practical
applications.

It is also the first ever problem to be proved NP-complete.



Propositional Satisfiability Problem

Given a propositional formula A, check whether it is satisfiable or
unsatisfiable.

If A is satisfiable, we also want to find a satisfying assignment for A,
that is, a model of A.

It is one of the most famous combinatorial problems in computer
science.

It is a very hard problem with a surprisingly large number of practical
applications.

It is also the first ever problem to be proved NP-complete.



Propositional Satisfiability Problem

Given a propositional formula A, check whether it is satisfiable or
unsatisfiable.

If A is satisfiable, we also want to find a satisfying assignment for A,
that is, a model of A.

It is one of the most famous combinatorial problems in computer
science.

It is a very hard problem with a surprisingly large number of practical
applications.

It is also the first ever problem to be proved NP-complete.



Russian Spy Puzzle

There are three persons: Stirlitz,
Müller, and Eismann. It is known that
exactly one of them is Russian, while
the other two are Germans. Moreover,
every Russian must be a spy.

When Stirlitz meets Müller in a
corridor, he makes the following joke:
“you know, Müller, you are as German
as I am Russian”. It is known that
Stirlitz always tells the truth when he
is joking.

We have to show that Eismann is not a Russian spy. How can we
solve problems of this kind?

(Images from http://hu.wikipedia.org/ and
http://www.elomagazin.com)
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Formalisation in Propositional Logic

Introduce nine propositional variables as in the following table:

Stirlitz Müller Eismann
Russian RS RM RE
German GS GM GE
Spy SS SM SE

For example,

SE : Eismann is a Spy
RS : Stirlitz is Russian
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Formalisation in Propositional Logic
There are three persons: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are Germans.

(RS ∧GM ∧GE) ∨ (GS ∧ RM ∧GE) ∨ (GS ∧GM ∧ RE).

Moreover, every Russian must be a spy.

(RS → SS) ∧ (RM → SM) ∧ (RE → SE).

When Stirlitz meets Müller in a corridor, he makes the following joke: “you
know, Müller, you are as German as I am Russian”.

RS ↔ GM.

Hidden: Russians are not Germans.

(RS ↔ ¬GS) ∧ (RM ↔ ¬GM) ∧ (RE ↔ ¬GE).

We have to show that Eismann is not a Russian spy.

To this end, we add the following formula

RE ∧ SE .

and check whether the resulting set of formulas is satisfiable. If it is
unsatisfiable, then Eismann cannot be a Russian spy.
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Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula, specifying the relation
between the inputs and the outputs of the circuit.

We know that equivalence-checking for propositional formulas can be
reduced to unsatisfiability-checking.
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Idea: Use Formula Evaluation Methods

Consider ¬((p → q) ∧ (p ∧ q → r)→ (p → r).
We can evaluate it in any interpretation, for example,
{p 7→ 0,q 7→ 0, r 7→ 0}:

subformula I0
1 ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) 0
2 (p → q) ∧ (p ∧ q → r)→ (p → r) 1
3 p → r 1
4 (p → q) ∧ (p ∧ q → r) 1
5 p ∧ q → r 1
6 p → q 1
7 p ∧ q 0
8 p p p 0
9 q q 0

10 r r 0



Truth Tables

¬((p → q) ∧ (p ∧ q → r)→ (p → r).
Likewise, we can evaluate it in all interpretations:

subformula I1 I2 I3 I4 I5 I6 I7 I8
1 ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) 0 0 0 0 0 0 0 0
2 (p → q) ∧ (p ∧ q → r)→ (p → r) 1 1 1 1 1 1 1 1
3 p → r 1 1 1 1 0 1 0 1
4 (p → q) ∧ (p ∧ q → r) 1 1 1 1 0 0 0 1
5 p ∧ q → r 1 1 1 1 1 1 0 1
6 p → q 1 1 1 1 0 0 1 1
7 p ∧ q 0 0 0 0 0 0 1 1
8 p p p 0 0 0 0 1 1 1 1
9 q q 0 0 1 1 0 0 1 1

10 r r 0 1 0 1 0 1 0 1

The formula is unsatisfiable since it is false in every interpretation.

Problem: a formula with n propositional variables has 2n different
interpretations.
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Compact Truth Table
Idea: we can sometimes evaluate a formula based on values of only
a subset of all variables.

subformula

I2 I3 I4 I1

¬((p → q) ∧ (p ∧ q → r)→ (p → r))

0 0 0 0

(p → q) ∧ (p ∧ q → r)→ (p → r)

1 1 1 1

p → r

1 0 0 1

(p → q) ∧ (p ∧ q → r)

0 0

p ∧ q → r

1 0 1

p → q

0 1

p ∧ q

0 1

p p p

0 1 1

q q

0 1

r r

0 0 0 1

The formula is unsatisfiable.
Note: the size of the compact table (but not the result) depends on
the order of variables!
The ideas of guessing variable values (or case analysis) and
propagation are the key ideas in nearly all propositional satisfiability
algorithms.
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The formula is unsatisfiable.
Note: the size of the compact table (but not the result) depends on
the order of variables!

The ideas of guessing variable values (or case analysis) and
propagation are the key ideas in nearly all propositional satisfiability
algorithms.
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Splitting: Idea

A⊥
p and A>

p : the formulas obtained by replacing in A all occurrences
of p by ⊥ and >, respectively.

Lemma
Let p be a variable, A be a formula, and I be an interpretation.

1. If I 6|= p, then A is equivalent to A⊥
p in I.

2. If I |= p, then A is equivalent to A>
p in I.

I Pick a variable p and perform case analysis on this variable:
I If p is false, replace p by ⊥;
I If p is true, replace p by >.

I When a formula contains occurrences of > or ⊥, simplify it.
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Simplification Rules for > and ⊥

Note: we need new simplification rules since formulas we simplify
may contain propositional variables.

Simplification rules for >:

¬> ⇒ ⊥
> ∧ A1 ∧ . . . ∧ An ⇒ A1 ∧ . . . ∧ An

> ∨ A1 ∨ . . . ∨ An ⇒ >
A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for ⊥:

¬⊥ ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

⊥∨ A1 ∨ . . . ∨ An ⇒ A1 ∨ . . . ∨ An

A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Note that they cover all cases when ⊥ or > occurs in the formula
apart from the trivial ones.
Thus, if we apply these rules until they are no more applicable we
obtain either ⊥, or >, or a formula containing neither ⊥ nor >.



Simplification Rules for > and ⊥

Note: we need new simplification rules since formulas we simplify
may contain propositional variables.

Simplification rules for >:

¬> ⇒ ⊥
> ∧ A1 ∧ . . . ∧ An ⇒ A1 ∧ . . . ∧ An

> ∨ A1 ∨ . . . ∨ An ⇒ >
A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for ⊥:

¬⊥ ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

⊥∨ A1 ∨ . . . ∨ An ⇒ A1 ∨ . . . ∨ An

A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Note that they cover all cases when ⊥ or > occurs in the formula
apart from the trivial ones.

Thus, if we apply these rules until they are no more applicable we
obtain either ⊥, or >, or a formula containing neither ⊥ nor >.



Simplification Rules for > and ⊥

Note: we need new simplification rules since formulas we simplify
may contain propositional variables.

Simplification rules for >:

¬> ⇒ ⊥
> ∧ A1 ∧ . . . ∧ An ⇒ A1 ∧ . . . ∧ An

> ∨ A1 ∨ . . . ∨ An ⇒ >
A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for ⊥:

¬⊥ ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

⊥∨ A1 ∨ . . . ∨ An ⇒ A1 ∨ . . . ∨ An

A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Note that they cover all cases when ⊥ or > occurs in the formula
apart from the trivial ones.
Thus, if we apply these rules until they are no more applicable we
obtain either ⊥, or >, or a formula containing neither ⊥ nor >.



Splitting Algorithm

procedure split(G)

parameters: function select
input: formula G
output: “satisfiable” or “unsatisfiable”
begin

G := simplify(G)
if G = > then return “satisfiable”
if G = ⊥ then return “unsatisfiable”
(p, b) := select(G)
case b of
1⇒

if split(G>
p ) =”satisfiable”

then return “satisfiable”
else return split(G⊥

p )
0⇒

if split(G⊥
p ) =”satisfiable”

then return “satisfiable”
else return split(G>

p )
end



Splitting Algorithm, Example
¬((p → q) ∧ (p ∧ q → r)→ (p → r))

The formula is unsatisfiable.

What this algorithm does is essentially the same as compact truth
tables, but on the syntactic level.
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Splitting Algorithm, Example 2

¬((p → q) ∧ (p ∧ q → r)→ (¬p → r))

The formula is satisfiable.

To find a model of this formula, we should simply collect choices
made on the branch terminating at >.

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, for
example the interpretation {p 7→ 0,q 7→ 0, r 7→ 0}.
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Parse Tree
A def
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I Position in the formula: 1.1.2.1;
I Subformula at this position: p ∧ q.
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Positions and Subformulas

I Position is any sequence of positive integers a1, . . . ,an, where
n ≥ 0, written as a1.a2. · · · .an.

I Empty position, denoted by ε: when n = 0.
I Position π in a formula A, subformula at a position, denoted A|π.

1. For every formula A, ε is a position in A and A|ε
def
= A.

2. Let A|π = B.
2.1 If B has the form B1 ∧ . . . ∧ Bn or B1 ∨ . . . ∨ Bn, then for all

i ∈ {1, . . . , n} the position π.i is a position in A, A|π.i
def
= Bi .

2.2 If B has the form ¬B1 , then π.1 is a position in A, A|π.1
def
= B1.

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and
we have A|π.1

def
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The Colouring Algorithm for Determining Polarity
¬((p → q) ∧ (p ∧ q → r)→ (p ↔ (r → q))).

I Color in blue all arcs below an equivalence.
I Color in red all uncoloured arcs going down from a negation or

left-hand side of an implication.
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I If a position has at least one blue arc above it, its polarity is 0.
I Otherwise, its polarity is −1 if it has an odd number of red arcs

above it.
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Position and Polarity, Again

position subformula polarity
ε ¬((p → q) ∧ (p ∧ q → r)→ (p → r)) 1
1 (p → q) ∧ (p ∧ q → r)→ (p → r) −1
1.1 (p → q) ∧ (p ∧ q → r) 1
1.1.1 p → q 1
1.1.1.1 p −1
1.1.1.2 q 1
1.1.2 p ∧ q → r 1
1.1.2.1 p ∧ q −1
1.1.2.1.1 p −1
1.1.2.1.2 q −1
1.1.2.2 r 1
1.2 p → r −1
1.2.1 p 1
1.2.2 r −1



Monotonic Replacement

Notation: A[B]π:

I formula A with the subformula B at the position π;
I formula A with the subformula at the position π replaced by B.

Lemma (Monotonic Replacement)
Let A,B,B′ be formulas, I be an interpretation, and I |= B → B′. If
pol(A, π) = 1, then I |= A[B]π → A[B′]π. Likewise, if pol(A, π) = −1,
then I |= A[B′]π → A[B]π.

While monotonic? Note that I |= B → B′ is the same as I(B) ≤ I(B′).
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Pure Variable

Variable p is pure in a formula A, if either all occurrences of p in A are
positive or all occurrences of p in A are negative.

p ∧ r → (¬q → (r ∧ ¬p))

→

∧ →

p r ¬

q

∧

r ¬

p

I Both occurrences of p are negative, so p is pure.
I The only occurrence of q is positive, so q is pure.
I r is not pure, since it has both negative and positive occurrences.
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Properties of Pure Variables

Lemma (Pure Variable)
Let p has only positive occurrences in A and I |= A. Define

I′ def
= I + (p 7→ 1)

Then I′ |= A.

Likewise, let p has only negative occurrences in A and I |= A. Define

I′ def
= I + (p 7→ 0)

Then I′ |= A.

Theorem (Pure Variable)
Let a variable p has only positive (respectively, only negative)
occurrences in A. Then A is satisfiable if and only if so is A>

p

(respectively, A⊥
p ).
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Pure Variable, Example

Consider ¬((p → q) ∧ (p ∧ q → r)→ (¬p → r)).

¬ 1

→ -1

1

∧1 → -1

1 2

¬ 1

p -1

1

r -1

1 2

→1 → 1

1 2

p-1 q1

1 2

∧-1 r 1

1 2

p-1 q -1

1 2

All occurrences of p are negative, so, for the purpose of checking
satisfiability we can replace p by ⊥.
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Example, Continued
¬((p → q) ∧ (p ∧ q → r)→ (¬p → r))

⇒
¬((⊥ → q) ∧ (⊥ ∧ q → r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q → r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q → r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r) ⇒
¬(> → r) ⇒
¬r ⇒
¬⊥ ⇒
>

All occurrences of p are negative

, so, for the purpose of checking
satisfiability we can replace p by ⊥.
After the simplification all occurrences of r are negative

, so, for the
purpose of checking satisfiability we can replace r by ⊥.

We have shown satisfiability of this formula deterministically, using
only the pure variable rule.
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We have shown satisfiability of this formula deterministically, using
only the pure variable rule.
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