Outline

Semantic Tableaux

Signed Formula

- Signed formula: an expression $A=b$, where A is a formula and b a boolean value.

Signed Formula

- Signed formula: an expression $A=b$, where A is a formula and b a boolean value.
- A signed formula $A=b$ is true in an interpretation I, denoted by $I \models A=b$, if $I(A)=b$.

Signed Formula

- Signed formula: an expression $A=b$, where A is a formula and b a boolean value.
- A signed formula $A=b$ is true in an interpretation I, denoted by $I \models A=b$, if $I(A)=b$.
- If $A=b$ is true in I, we also say that I is a model of $A=b$, or that I satisfies $A=b$.
- A signed formula is satisfiable if it has a model.

Signed Formula

- Signed formula: an expression $A=b$, where A is a formula and b a boolean value.
- A signed formula $A=b$ is true in an interpretation I, denoted by $I \models A=b$, if $I(A)=b$.
- If $A=b$ is true in I, we also say that I is a model of $A=b$, or that I satisfies $A=b$.
- A signed formula is satisfiable if it has a model.

Note:

1. For every formula A and interpretation / exactly one of the signed formulas $A=1$ and $A=0$ is true in l.

Signed Formula

- Signed formula: an expression $A=b$, where A is a formula and b a boolean value.
- A signed formula $A=b$ is true in an interpretation I, denoted by $I \models A=b$, if $I(A)=b$.
- If $A=b$ is true in I, we also say that I is a model of $A=b$, or that I satisfies $A=b$.
- A signed formula is satisfiable if it has a model.

Note:

1. For every formula A and interpretation / exactly one of the signed formulas $A=1$ and $A=0$ is true in l.
2. A formula A is satisfiable if and only if so is the signed formula $A=1$.

How to find a model of a signed formula?

Example: $(A \rightarrow B)=1$.

How to find a model of a signed formula?

$$
\begin{aligned}
& \text { Operation table for } \rightarrow \text { : } \\
& \qquad \begin{array}{c|cc}
\rightarrow & B=1 & B=0 \\
\hline A=1 & 1 & 0 \\
A=0 & 1 & 1
\end{array}
\end{aligned}
$$

Example: $(A \rightarrow B)=1$.

How to find a model of a signed formula?

$$
\begin{aligned}
& \text { Operation table for } \rightarrow \text { : } \\
& \qquad \begin{array}{c|cc}
\rightarrow & B=1 & B=0 \\
\hline A=1 & 1 & 0 \\
A=0 & 1 & 1
\end{array}
\end{aligned}
$$

Example: $(A \rightarrow B)=1$.
So $(A \rightarrow B)=1$ if and only if $A=0 \mathrm{OR} B=1$.

How to find a model of a signed formula?

Operation table for \rightarrow :

Example: $(A \rightarrow B)=1$.
So $(A \rightarrow B)=1$ if and only if $A=0 \mathrm{OR} B=1$.

\rightarrow	$B=1$	$B=0$
$A=1$	1	0
$A=0$	1	1

Likewise, $(A \rightarrow B)=0$ if and only if $A=1$ AND $B=0$.

How to find a model of a signed formula?

Operation table for \rightarrow :

Example: $(A \rightarrow B)=1$.
So $(A \rightarrow B)=1$ if and only if $A=0 \mathrm{OR} B=1$.

Likewise, $(A \rightarrow B)=0$ if and only if $A=1$ AND $B=0$.

So we can use AND-OR trees to carry out case analysis.

Tableau

Tableau: a tree having signed formulas at nodes.

Tableau

Tableau: a tree having signed formulas at nodes.
Tableau for a signed formula $A=b$ has $A=b$ as a root.

Tableau

Tableau: a tree having signed formulas at nodes.
Tableau for a signed formula $A=b$ has $A=b$ as a root.
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas.

Tableau

Tableau: a tree having signed formulas at nodes.
Tableau for a signed formula $A=b$ has $A=b$ as a root.
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas.

Notation for a set of branches: $B_{1}|\ldots| B_{n}$, where each of the B_{i} is a branch.

Branch Expansion Rules

$$
\begin{aligned}
& \left(A_{1} \wedge \ldots \wedge A_{n}\right)=0 \rightsquigarrow A_{1}=0|\ldots| A_{n}=0 \\
& \left(A_{1} \wedge \ldots \wedge A_{n}\right)=1 \quad \rightsquigarrow A_{1}=1, \ldots, A_{n}=1 \\
& \left(A_{1} \vee \ldots \vee A_{n}\right)=0 \quad \rightsquigarrow \quad A_{1}=0, \ldots, A_{n}=0 \\
& \left(A_{1} \vee \ldots \vee A_{n}\right)=1 \rightsquigarrow A_{1}=1|\ldots| A_{n}=1 \\
& \begin{array}{lll}
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1
\end{array} \\
& \left(\neg A_{1}\right)=0 \quad \rightsquigarrow \quad A_{1}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \\
& \left(A_{1} \leftrightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=0, A_{2}=1 \mid A_{1}=1, A_{2}=0 \\
& \left(A_{1} \leftrightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0, A_{2}=0 \mid A_{1}=1, A_{2}=1
\end{aligned}
$$

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

A branch is marked closed in any of the following cases:

- it contains both $p=0$ and $p=1$ for some atom p

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

A branch is marked closed in any of the following cases:

- it contains both $p=0$ and $p=1$ for some atom p
- it contains $T=0$;
- it contains $\perp=1$.

A Semantic Tableau

$$
(\neg(q \vee p \rightarrow p \vee q))=1
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
(\neg(q \vee p \rightarrow p \vee q))=1
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))=1 \\
(q \vee p \rightarrow p \vee q)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))=1 \\
(q \vee p \rightarrow p \vee q)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))=1 \\
(q \vee p \rightarrow p \vee q)=0 \\
\mid \\
(q \vee p)=1 \\
(p \vee q)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))=1 \\
(q \vee p \rightarrow p \vee q)=0 \\
\mid \\
(q \vee p)=1 \\
(p \vee q)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

A Semantic Tableau

$$
\begin{aligned}
& (\neg(q \vee p \rightarrow p \vee q))=1 \\
& (q \vee p \rightarrow p \vee q)=0 \\
& (q \vee p)=1 \\
& (p \vee q)=0 \\
& \begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array} \\
& p=0 \\
& q=0
\end{aligned}
$$

A Semantic Tableau

$$
\begin{aligned}
& (\neg(q \vee p \rightarrow p \vee q))=1 \\
& (q \vee p \rightarrow p \vee q)=0 \\
& (q \vee p)=1 \\
& (p \vee q)=0 \\
& \begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array} \\
& p=0 \\
& q=0
\end{aligned}
$$

A Semantic Tableau

$$
\begin{aligned}
& (\neg(q \vee p \rightarrow p \vee q))=1 \\
& (q \vee p \rightarrow p \vee q)=0 \\
& (q \vee p)=1 \\
& (p \vee q)=0 \\
& \left(A_{1} \vee A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=0, A_{2}=0 \\
& \left(A_{1} \vee A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=1 \mid A_{2}=1 \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

A Semantic Tableau

$$
\begin{aligned}
& (\neg(q \vee p \rightarrow p \vee q))=1 \\
& (q \vee p \rightarrow p \vee q)=0 \\
& \\
& \left(\begin{array}{lrll}
& \\
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
(q \vee p)=1 & \left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
(p \vee q)=0 & \left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow A_{1}=0
\end{array}\right.
\end{aligned}
$$

A Semantic Tableau

$$
\begin{aligned}
& (\neg(q \vee p \rightarrow p \vee q))=1 \\
& (q \vee p \rightarrow p \vee q)=0 \\
& (q \vee p)=1 \\
& (p \vee q)=0 \\
& \begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array} \\
& \begin{array}{cc}
& p=0 \\
q=0 \\
q=1 & p=1 \\
\text { closed } & \text { closed }
\end{array}
\end{aligned}
$$

Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1
$$

$$
\begin{array}{rlll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
\quad((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
\quad((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
\quad \mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
(\neg p \rightarrow r)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
\quad((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
(\neg p \rightarrow r)=0
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
(\neg p \rightarrow r)=0 \\
\mid \\
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
(\neg p \rightarrow r)=0 \\
\mid \\
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(A_{1} \rightarrow A_{2}\right)=1 & \rightsquigarrow & A_{1}=0 \mid A_{2}=1 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \rightarrow r)=0 \rightarrow r))=1 \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
\mid \\
(\neg p)=1 \\
r=0
\end{array} \\
& \left(A_{1} \wedge A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=0 \\
& \left(A_{1} \wedge A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=1 \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \underset{(\neg p \rightarrow r)=0}{\wedge(p \wedge q \rightarrow r))=1} \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
\mid \\
(\neg p)=1 \\
r=0
\end{array} \\
& \left(A_{1} \wedge A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=0 \\
& \left(A_{1} \wedge A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=1 \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \rightarrow r)=0 \rightarrow r))=1 \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
(\neg p)=1 \\
r=0 \\
p=0 \quad q=1
\end{array} \\
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \rightarrow r)=0 \rightarrow r))=1 \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
(\neg p)=1 \\
r=0 \\
p=0 \quad q=1
\end{array} \\
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \rightarrow r)=0 \rightarrow r))=1 \\
& \begin{array}{l}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
\substack{(\neg p)=1 \\
p=0} \\
p=0 \\
p=0
\end{array} \\
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \rightarrow r)=0 \rightarrow r))=1 \\
& \begin{array}{l}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array} \\
& \begin{array}{c}
\substack{(\neg p)=1 \\
p=0} \\
p=0 \\
p=0
\end{array} \\
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \wedge r)=0 \rightarrow r))=1 \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg p \wedge r)=0 \rightarrow r))=1 \\
& \begin{array}{c}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(p) \xrightarrow{\rightarrow} \wedge)=0 \rightarrow r))=1 \\
& (p \wedge q \rightarrow r)=1 \\
& (p \wedge q)=\sum_{p=0}^{\substack{p=0}} \\
& \begin{array}{lll}
\left(A_{1} \wedge A_{2}\right)=0 & \rightsquigarrow & A_{1}=0 \mid A_{2}=0 \\
\left(A_{1} \wedge A_{2}\right)=1 & \rightsquigarrow & A_{1}=1, A_{2}=1
\end{array} \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
& \begin{array}{l}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(A_{1} \wedge A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=0 \\
& \left(A_{1} \wedge A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=1 \\
& \left(A_{1} \rightarrow A_{2}\right)=0 \quad \rightsquigarrow \quad A_{1}=1, A_{2}=0 \\
& \left(A_{1} \rightarrow A_{2}\right)=1 \quad \rightsquigarrow \quad A_{1}=0 \mid A_{2}=1 \\
& \left(\neg A_{1}\right)=1 \quad \rightsquigarrow \quad A_{1}=0
\end{aligned}
$$

All rules on this branch have been applied, so the formula is satisfiable.

Finding Models Using Tableaux

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1 \\
(\neg p \rightarrow r)=0 \\
(p \wedge q \rightarrow r)=1 \\
(p \rightarrow q)=1 \\
(\neg p)=1 \\
r=0 \\
p=0 \\
p=0 \\
\quad \mid \\
q=0
\end{gathered}
$$

Finding Models Using Tableaux

Build an open branch on which all rules have been applied.

Finding Models Using Tableaux

Build an open branch on which all rules have been applied.

Select signed atoms on this branch

Finding Models Using Tableaux

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(\neg \wedge \wedge q \rightarrow r))=1 \\
& \text { | } \\
& \begin{array}{l}
(p \rightarrow q)=1 \\
(p \wedge q \rightarrow r)=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Build an open branch on } \\
& \text { which all rules have been } \\
& \text { applied. } \\
& \text { Select signed atoms on } \\
& \text { this branch } \\
& \text { They give us a model } \\
& \{r \mapsto 0, p \mapsto 0, q \mapsto \cdots\}
\end{aligned}
$$

Checking Other Properties with Tableaux

A formula A is satisfiable iff a tableau for $A=1$ contains a complete open branch (and iff every tableau for $A=1$ contains a complete open branch).

Checking Other Properties with Tableaux

A formula A is satisfiable iff a tableau for $A=1$ contains a complete open branch (and iff every tableau for $A=1$ contains a complete open branch).

A formula A is valid iff there is a closed a tableau for $A=0$ (and iff every tableau for $A=0$ is closed).

Checking Other Properties with Tableaux

A formula A is satisfiable iff a tableau for $A=1$ contains a complete open branch (and iff every tableau for $A=1$ contains a complete open branch).

A formula A is valid iff there is a closed a tableau for $A=0$ (and iff every tableau for $A=0$ is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)=0$ (and iff every tableau for $(A \leftrightarrow B)=0$ is closed).

Checking Other Properties with Tableaux

A formula A is satisfiable iff a tableau for $A=1$ contains a complete open branch (and iff every tableau for $A=1$ contains a complete open branch).

A formula A is valid iff there is a closed a tableau for $A=0$ (and iff every tableau for $A=0$ is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)=0$ (and iff every tableau for $(A \leftrightarrow B)=0$ is closed).

A fully expanded tableau for $A=1$ gives us all models of A.

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

$$
(\neg(q \vee p \rightarrow p \vee q))=1
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

$$
(\neg(q \vee p \rightarrow p \vee q))=1
$$

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
\left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
\left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
\left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{lrll}
& \left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
(\neg(q \vee p \rightarrow p \vee q))=1 \rightsquigarrow & \left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
(q \vee p \rightarrow p \vee q)=0 \rightsquigarrow & \left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
(q \vee p)=1,(p \vee q)=0 \rightsquigarrow & \left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0 \\
(q \vee p)=1, p=0, q=0 & & & \\
q=1, p=0, q=0 \mid p=1, p=0, q=0 & &
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{lrll}
& \left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
(\neg(q \vee p \rightarrow p \vee q))=1 \rightsquigarrow & \left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1 \mid A_{2}=1 \\
(q \vee p \rightarrow p \vee q)=0 \rightsquigarrow & \left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
(q \vee p)=1,(p \vee q)=0 \rightsquigarrow & \left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0 \\
(q \vee p)=1, p=0, q=0 & & & \\
q=1, p=0, q=0 \mid p=1, p=0, q=0 & &
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{lrll}
& \left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
(\neg(q \vee p \rightarrow p \vee q))=1 \rightsquigarrow & \left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1| | A_{2}=1 \\
(q \vee p \rightarrow p \vee q)=0 \rightsquigarrow & \left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
(q \vee p)=1,(p \vee q)=0 \rightsquigarrow & \left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0 \\
(q \vee p)=1, p=0, q=0 & & & \\
q=1, p=0, q=0 \mid p=1, p=0, q=0 & & & \\
p=1, p=0, q=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

$$
\begin{array}{lrll}
& \left(A_{1} \vee A_{2}\right)=0 & \rightsquigarrow & A_{1}=0, A_{2}=0 \\
(\neg(q \vee p \rightarrow p \vee q))=1 \rightsquigarrow & \left(A_{1} \vee A_{2}\right)=1 & \rightsquigarrow & A_{1}=1| | A_{2}=1 \\
(q \vee p \rightarrow p \vee q)=0 \rightsquigarrow & \left(A_{1} \rightarrow A_{2}\right)=0 & \rightsquigarrow & A_{1}=1, A_{2}=0 \\
(q \vee p)=1,(p \vee q)=0 \rightsquigarrow & \left(\neg A_{1}\right)=1 & \rightsquigarrow & A_{1}=0 \\
(q \vee p)=1, p=0, q=0 & & & \\
q=1, p=0, q=0 \mid p=1, p=0, q=0 & & & \\
p=1, p=0, q=0
\end{array}
$$

Alternative View of Tableaux

We will make the following changes:

1. show a tableau using the $B_{1}|\cdots| B_{n}$ notation;
2. remove closed branches;
3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.
Consider Example 1 again.

All branches are closed, so the signed formula $(\neg(q \vee p \rightarrow p \vee q))=1$ is unsatisfiable.

Alternative View of Tableaux: Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1
$$

Alternative View of Tableaux: Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q)=0, r=0 \mid \\
& p=0, r=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q)=0, r=0 \mid \\
& p=0, r=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \rightsquigarrow \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q)=0, r=0 \\
& p=0, r=1, r=0 \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0, r=0 \mid \\
& p=0, q=0, r=0 \mid \\
& p=0, r=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

Alternative View of Tableaux: Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))=1 \rightsquigarrow \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))=0 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p \rightarrow r)=0 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1,(\neg p)=1, r=0 \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r))=1, p=0, r=0 \\
& (p \rightarrow q)=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q \rightarrow r)=1, r=0 \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0,(p \wedge q)=0, r=0 \\
& p=0, r=1, r=0 \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0 \rightsquigarrow \\
& p=0, r=0 \mid \\
& p=0, q=0, r=0 \mid \\
& p=0, r=1, r=0 \mid \\
& q=1,(p \wedge q \rightarrow r)=1, p=0, r=0
\end{aligned}
$$

The branch containing $p=0, r=0$ can no more be expanded or closed so it gives us a model (in fact, two models)

