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State-Changing Systems

Our main interest from now on is modelling state-changing systems.

Informally

Formally

At each time moment, the system
is in a particular state.

This state can be character-
ized by values of some vari-
ables, called the state vari-
ables.

The system state is changing in
time. There are actions (con-
trolled or not) that change the
state.

Actions change values of
state variables.
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Reasoning About State-Changing Systems

1. Build a formal model of this state-changing system which
describes the behaviour of the system, or some abstraction
thereof.

2. Using a logic to specify and verify properties of the system.
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Vending Machine Example

Consider an example state-changing system: a vending machine
which dispenses drinks in a university department.

I The machine has several components, including at least the
following: a storage space for storing and preparing drinks, a box
for dispensing drinks and a coin slot for putting coins in.

I When the machine is operating, it goes through several states
depending on the behavior of the current customer.

I Each action undertaken by the customer or by the machine itself
may change the state of the machine. For example, when the
customer inserts a coin in the coin slot, the amount of money
stored in the slot changes.

I Actions which may change the state of the system are called
transitions.
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Modeling State-Changing Systems

To build a formal model of a particular state-changing system, we
should define

1. What are the state variables.
2. What are the possible values of the state variables.
3. What are the transitions and how they change the values of the

state variables.

A state can be identified with the set of pairs (variable,value), or with
a function from variables to values.



Modeling State-Changing Systems

To build a formal model of a particular state-changing system, we
should define

1. What are the state variables.
2. What are the possible values of the state variables.
3. What are the transitions and how they change the values of the

state variables.

A state can be identified with the set of pairs (variable,value), or with
a function from variables to values.



Transition Systems

A transition system is a tuple S = (S, In,T ,X ,dom,L), where

1. S is a finite non-empty set, called the set of states of S.
2. In ⊆ S is a non-empty set of states, called the set of initial states

of M.

3. T ⊆ S × S is a set of pairs of states, called the transition relation
of S.

X , dom and L will be explained later.
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State Transition Graph

State Transition Graph of a transition system S:

I The nodes are the states of S.
I The arcs are elements of the transition relation: there is an arc

from a state s to a state s′ if and only if (s, s′) ∈ T .

Assume two boolean-valued variables x , y .

XYZ XYZ

XYZXYZ

We denote the initial state(s) using double lines.
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4. X is a finite set, its members are called state variables.
5. dom is a mapping from X such that for every state variable

v ∈ X , dom(v) is a non-empty set, called the domain for v .
6. L is a function mapping states in S into interpretations, called the

labeling function of S. It will be explained later.

The transition system is said to be finite-state if for every state
variable v , the domain dom(v) for this variable is finite.

We will only study finite-state transition systems.
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Labeling Function

Note this part of the definition:

4. X is a finite set, its members are called state variables.
5. dom is a mapping from X such that for every state variable

v ∈ X , dom(v) is a non-empty set, called the domain for v .

That is, for a transition system S = (S, In,T ,X ,dom,L), the set of
variables X and the mapping dom defines an instance of
propositional logic of finite domains.

Denote the set of all interpretations for this instance of PLFD by I.
Then the labelling function L is a mapping L : S → I, that is, it maps
every state to an interpretation.
This means that

1. for every variable v ∈ X and every state s ∈ S, we have
L(s)(v) ∈ dom(v);

2. for every formula A of this instance of PLFD and every state
s ∈ S, either L(s) |= A or L(s) 6|= A.
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States as Interpretations

Essentially, in each state each variable has a value.

I If L(s)(x) = v then we say that x has the value v in s and write
s(x) = v .

I If L(s) |= A then we say that s satisfies A or A is true in s and
write s |= A.

In both cases, we identify s with L(s).
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I s1 |= x
I s2 |= x ∧ y
I s3 |= x↔ y
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Transitions

When we model systems, we will usually represent the transition
relation as a union of so-called transitions.

I A transition t is any set of pairs of states.
I A transition t is applicable to a state s if there exists a state s′

such that (s, s′) ∈ t .
I A transition t is deterministic if for every state s there exists at

most one state s′ such that (s, s′) ∈ t .



Vending Machine

1. The vending machine contains a drink storage, a coin slot, and a
drink dispenser. The drink storage stores drinks of two kinds:
beer and coffee. We are only interested in whether a particular
kind of drink is currently being stored or not, but not interested in
the amount of it.

2. The coin slot can accommodate up to three coins.
3. The drink dispenser can store at most one drink. If it contains a

drink, this drink should be removed before the next one can be
dispensed.

4. A can of beer costs two coins. A cup of coffee costs one coin.
5. There are two kinds of customers: students and professors.

Students drink only beer, professors drink only coffee.
6. From time to time the drink storage can be recharged.
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Formalization: Variables and Domains

variable domain explanation
st coffee {0,1} drink storage contains coffee
st beer {0,1} drink storage contains beer
disp {none,beer , coffee} content of drink dispenser
coins {0,1,2,3} number of coins in the slot
customer {none, student ,prof} customer



Transitions for the Vending Machine

1. Recharge which results in the drink storage having both beer
and coffee.

2. Customer arrives, after which a customer appears at the
machine.

3. Customer leaves, after which the customer leaves.
4. Coin insert , when the customer inserts a coin in the machine.
5. Dispense beer , when the customer presses the button to get a

can of beer.
6. Dispense coffee, when the customer presses the button to get a

cup of coffee.
7. Take drink , when the customer removes a drink from the

dispenser.



Symbolic Representation of Sets of States

Let S = (S, In,T ,X ,dom,L) be a finite-state transition system. Then
every formula F defines a set states:

{s | s |= F}.

We say that F (symbolically) represent this set of states.
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Example

Let us represent the set of states in which the machine is ready to
dispense a drink. In every such state, a drink should be available, the
drink dispenser empty, and the coin slot contain enough coins.

This can be expressed by:

(st coffee ∨ st beer) ∧
disp = none ∧
((coins = 1 ∧ st coffee) ∨ coins = 2 ∨ coins = 3).
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Symbolic Representation of Transitions

A transition is a relation on pairs of states. It brins the system to the
current state and the next state. Formulas of PLFD can only express
properties of a single state. How can we represent transitions using
formulas?

I In addition to the set of propositional variables X = {x1, . . . , xn},
introduce a set of next state variables X ′ = {x ′

1, . . . , x
′
n}.

I Pairs of states as interpretations. For every variable x ∈ X define

(s, s′)(x) def
= s(x);

(s, s′)(x ′)
def
= s′(x).

I Symbolic representation. Formula F of variables X ∪ X ′

represents a transition t if t = {(s, s′) | (s, s′) |= F}.
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Example

The transition Recharge:

customer = none ∧ st coffee′ ∧ st beer′.

But this formula includes describes a very strange transition after
which, for example

I coins may appear in and disappear from the slot;
I dfrinks may appear in and disappear from the dispenser.
I . . .
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Frame Problem

One has to express explicitly, maybe for a large number of state
variables, that the values of these variables do not change after a
transition. For example,

(coins = 0 ↔ coins′ = 0) ∧
(coins = 1↔ coins′ = 1) ∧
(coins = 2 ↔ coins′ = 2) ∧
(coins = 3 ↔ coins′ = 3).

This frame problem arises in artificial intelligence, knowledge
representation, and reasoning about actions.



End of Lecture 17

Slides for lecture 17 end here . . .



Notation for the Frame Formula

Abbreviations (we assume dom(x) = dom(y)):

x 6= v def
= ¬(x = v)

x = y def
=

∧
v∈dom(x)(x = v ↔ y = v).

Let S be a transition system and {x1, . . . , xn} ⊆ X be a set of state
variables of L(S). Define

only(x1, . . . , xn)
def
=

∧
y∈X\{x1,...,xn} y = y ′.

This formula expresses that x1, . . . , xn are the only variables whose
values can be changed by the transition.
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Preconditions and Postconditions

When we represent a transition symbolically using a formula F of
variables X ∪ X ′, the formula F is usually represented as the
conjunction F1 ∧ F2 of two formulas:

1. F1 expresses some conditions on the variables X which are
necessary to execute the transition (precondition);

2. F2 expresses some conditions relating variables in X to those in
X ′, i.e., conditions which show how the values of the variables
after the transition relate to their values before the transition
(postcondition).
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Transitions for the Vending Machine

1. Recharge which results in the drink storage having both beer
and coffee.

2. Customer arrives, after which a customer appears at the
machine.

3. Customer leaves, after which the customer leaves.
4. Coin insert , when the customer inserts a coin in the machine.
5. Dispense beer , when the customer presses the button to get a

can of beer.
6. Dispense coffee, when the customer presses the button to get a

cup of coffee.
7. Take drink , when the customer removes a drink from the

dispenser.



Transitions: Symbolic Representation
st coffee {0, 1}
st beer {0, 1}
disp {none, beer , coffee}
coins {0, 1, 2, 3}
customer {none, student , prof}

Recharge
Customer arrives
Customer leaves

Coin insert

Recharge def
= customer = none ∧

st coffee′ ∧ st beer′ ∧
only(st coffee, st beer).

Customer arrives def
= customer = none ∧ customer′ 6= none ∧

only(customer)

Customer leaves def
= customer 6= none ∧ customer′ = none ∧

only(customer).

Coin insert def
= customer 6= none ∧ coins 6= 3 ∧

(coins = 0 → coins′ = 1)∧
(coins = 1→ coins′ = 2) ∧
(coins = 2 → coins′ = 3) ∧
only(coins).
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Transitions
Model checkers often use the convention that the variables that can
change are those variables x such that x ′ occurs in the problem.
Under this convention we can remove only(. . .) from all transitions
and change Dispense beer and Dispense coffee as follows:

Dispense beer def
= customer = student ∧ st beer ∧

disp = none ∧ (coins = 2 ∨ coins = 3) ∧
disp′ = beer ∧
(coins = 2 → coins′ = 0) ∧
(coins = 3 → coins′ = 1) ∧
st beer′ = st beer′.

Dispense coffee def
= customer = prof ∧ st coffee ∧

disp = none ∧ coins 6= 0 ∧
disp′ = coffee ∧
(coins = 1 → coins′ = 0) ∧
(coins = 2 → coins′ = 1) ∧
(coins = 3 → coins′ = 2) ∧
st coffee′ = st coffee′.



Temporal Properties of Transition Systems

1. There is no state in which professor and student are both
customers.

2. Students never drink coffee.
3. The machine cannot dispense drinks forever without recharging.
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